• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Découverte et exploitation d'objets visuels fréquents dans des collections multimédia / Mining and exploitation of frequent visual objects in multimedia collections

Letessier, Pierre 28 March 2013 (has links)
L’objectif principal de cette thèse est la découverte d’objets visuels fréquents dans de grandes collections multimédias (images ou vidéos). Comme dans de nombreux domaines (finance, génétique, . . .), il s’agit d’extraire une connaissance de manière automatique ou semi-automatique en utilisant la fréquence d’apparition d’un objet au sein d’un corpus comme critère de pertinence. Une première contribution de la thèse est de fournir un formalisme aux problèmes de découverte et de fouille d’instances d’objets visuels fréquents. La deuxième contribution de la thèse est une méthode générique de résolution de ces deux types de problème reposant d’une part sur un processus itératif d’échantillonnage d’objets candidats et d’autre part sur une méthode efficace d’appariement d’objets rigides à large échelle. La troisième contribution de la thèse s’attache à construire une fonction de vraisemblance s’approchant au mieux de la distribution parfaite, tout en restant scalable et efficace. Les expérimentations montrent que contrairement aux méthodes de l’état de l’artnotre approche permet de découvrir efficacement des objets de très petite taille dans des millions d’images. Pour finir, plusieurs scénarios d’exploitation des graphes visuels produits par notre méthode sont proposées et expérimentés. Ceci inclut la détection d’évènements médiatiques transmédias et la suggestion de requêtes visuelles. / The main goal of this thesis is to discover frequent visual objects in large multimedia collections. As in many areas (finance, genetics, . . .), it consists in extracting a knowledge, using the occurence frequency of an object in a collection as a relevance criterion. A first contribution is to provide a formalism to the problems of mining and discovery of frequent visual objects. The second contribution is a generic method to solve these two problems, based on an iterative sampling process, and on an efficient and scalable rigid objects matching. The third contribution of this work focuses on building a likelihood function close to the perfect distribution. Experiments show that contrary to state-of-the-art methods, our approach allows to discover efficiently very small objects in several millions images. Finally, several applications are presented, including trademark logos discovery, transmedia events detection or visual-based query suggestion.
2

Ανάπτυξη μεθόδων ανάκτησης εικόνας βάσει περιεχομένου σε αναπαραστάσεις αντικειμένων ασαφών ορίων / Development of methods for content-based image retrieval in representations of fuzzily bounded objects

Καρτσακάλης, Κωνσταντίνος 11 March 2014 (has links)
Τα δεδομένα εικόνων που προκύπτουν από την χρήση βιο-ιατρικών μηχανημάτων είναι από την φύση τους ασαφή, χάρη σε μια σειρά από παράγοντες ανάμεσα στους οποίους οι περιορισμοί στον χώρο, τον χρόνο, οι παραμετρικές αναλύσεις καθώς και οι φυσικοί περιορισμοί που επιβάλλει το εκάστοτε μηχάνημα. Όταν το αντικείμενο ενδιαφέροντος σε μια τέτοια εικόνα έχει κάποιο μοτίβο φωτεινότητας ευκρινώς διαφορετικό από τα μοτίβα των υπόλοιπων αντικειμένων που εμφανίζονται, είναι εφικτή η κατάτμηση της εικόνας με έναν απόλυτο, δυαδικό τρόπο που να εκφράζει επαρκώς τα όρια των αντικειμένων. Συχνά ωστόσο σε τέτοιες εικόνες υπεισέρχονται παράγοντες όπως η ανομοιογένεια των υλικών που απεικονίζονται, θόλωμα, θόρυβος ή και μεταβολές στο υπόβαθρο που εισάγονται από την συσκευή απεικόνισης με αποτέλεσμα οι εντάσεις φωτεινότητας σε μια τέτοια εικόνα να εμφανίζονται με έναν ασαφή, βαθμωτό, «μη-δυαδικό» τρόπο. Μια πρωτοπόρα τάση στην σχετική βιβλιογραφία είναι η αξιοποίηση της ασαφούς σύνθεσης των αντικειμένων μιας τέτοιας εικόνας, με τρόπο ώστε η ασάφεια να αποτελεί γνώρισμα του εκάστοτε αντικειμένου αντί για ανεπιθύμητο χαρακτηριστικό: αντλώντας από την θεωρία ασαφών συνόλων, τέτοιες προσεγγίσεις κατατμούν μια εικόνα με βαθμωτό, μη-δυαδικό τρόπο αποφεύγοντας τον μονοσήμαντο καθορισμό ορίων μεταξύ των αντικειμένων. Μια τέτοια προσέγγιση καταφέρνει να αποτυπώσει με μαθηματικούς όρους την ασάφεια της θολής εικόνας, μετατρέποντάς την σε χρήσιμο εργαλείο ανάλυσης στα χέρια ενός ειδικού. Από την άλλη, το μέγεθος της ασάφειας που παρατηρείται σε τέτοιες εικόνες είναι τέτοιο ώστε πολλές φορές να ωθεί τους ειδικούς σε διαφορετικές ή και αντικρουόμενες κατατμήσεις, ακόμη και από το ίδιο ανθρώπινο χέρι. Επιπλέον, το παραπάνω έχει ως αποτέλεσμα την οικοδόμηση βάσεων δεδομένων στις οποίες για μια εικόνα αποθηκεύονται πολλαπλές κατατμήσεις, δυαδικές και μη. Μπορούμε με βάση μια κατάτμηση εικόνας να ανακτήσουμε άλλες, παρόμοιες τέτοιες εικόνες των οποίων τα δεδομένα έχουν προέλθει από αναλύσεις ειδικών, χωρίς σε κάποιο βήμα να υποβαθμίζουμε την ασαφή φύση των αντικειμένων που απεικονίζονται; Πως επιχειρείται η ανάκτηση σε μια βάση δεδομένων στην οποία έχουν αποθηκευτεί οι παραπάνω πολλαπλές κατατμήσεις για κάθε εικόνα; Αποτελεί κριτήριο ομοιότητας μεταξύ εικόνων το πόσο συχνά θα επέλεγε ένας ειδικός να οριοθετήσει ένα εικονοστοιχείο μιας τέτοιας εικόνας εντός ή εκτός ενός τέτοιου θολού αντικειμένου; Στα πλαίσια της παρούσας εργασίας προσπαθούμε να απαντήσουμε στα παραπάνω ερωτήματα, μελετώντας διεξοδικά την διαδικασία ανάκτησης τέτοιων εικόνων. Προσεγγίζουμε το πρόβλημα θεωρώντας ότι για κάθε εικόνα αποθηκεύονται στην βάση μας περισσότερες της μίας κατατμήσεις, τόσο δυαδικής φύσης από ειδικούς όσο και από ασαφείς από αυτόματους αλγορίθμους. Επιδιώκουμε εκμεταλλευόμενοι το χαρακτηριστικό της ασάφειας να ενοποιήσουμε την διαδικασία της ανάκτησης και για τις δυο παραπάνω περιπτώσεις, προσεγγίζοντας την συχνότητα με την οποία ένας ειδικός θα οριοθετούσε το εκάστοτε ασαφές αντικείμενο με συγκεκριμένο τρόπο καθώς και τα ενδογενή χαρακτηριστικά ενός ασαφούς αντικειμένου που έχει εξαχθεί από αυτόματο αλγόριθμο. Προτείνουμε κατάλληλο μηχανισμό ανάκτησης ο οποίος αναλαμβάνει την μετάβαση από τον χώρο της αναποφασιστικότητας και του ασαφούς στον χώρο της πιθανοτικής αναπαράστασης, διατηρώντας παράλληλα όλους τους περιορισμούς που έχουν επιβληθεί στα δεδομένα από την πρωταρχική ανάλυσή τους. Στην συνέχεια αξιολογούμε την διαδικασία της ανάκτησης, εφαρμόζοντας την νέα μέθοδο σε ήδη υπάρχον σύνολο δεδομένων από το οποίο και εξάγουμε συμπεράσματα για τα αποτελέσματά της. / Image data acquired through the use of bio-medical scanners are by nature fuzzy, thanks to a series of factors including limitations in spatial, temporal and parametric resolutions other than the physical limitations of the device. When the object of interest in such an image displays intensity patterns that are distinct from the patterns of other objects appearing together, a segmentation of the image in a hard, binary manner that clearly defines the borders between objects is feasible. It is frequent though that in such images factors like the lack of homogeneity between materials depicted, blurring, noise or deviations in the background pose difficulties in the above process. Intensity values in such an image appear in a fuzzy, gradient, “non-binary” manner. An innovative trend in the field of study is to make use of the fuzzy composition of objects in such an image, in a way in which fuzziness becomes a characteristic feature of the object instead of an undesirable trait: deriving from the theory of fuzzy sets, such approaches segment an image in a gradient, non-binary manner, therefore avoiding to set up a clear boundary between depicted objects. Such approaches are successful in capturing the fuzziness of the blurry image in mathematical terms, transforming the quality into a powerful tool of analysis in the hands of an expert. On the other hand, the scale of fuzziness observed in such images often leads experts towards different or contradictory segmentations, even drawn by the same human hand. What is more, the aforementioned case results in the compilation of image data bases consisting of multiple segmentations for each image, both binary and fuzzy. Are we able, by segmenting an image, to retrieve other similar such images whose segmented data have been acquired by experts, without downgrading the importance of the fuzziness of the objects depicted in any step involved? How exactly are images in such a database storing multiple segmentations of each retrieved? Is the frequency with which an expert would choose to either include or exclude from a fuzzy object a pixel of an image, a criterion of semblance between objects depicted in images? Finally, how able are we to tackle the feature of fuzziness in a probabilistic manner, thus providing a valuable tool in bridging the gap between automatic segmentation algorithms and segmentations coming from field experts? In the context of this thesis, we tackle the aforementioned problems studying thoroughly the process of image retrieval in a fuzzy context. We consider the case in which a database consists of images for which exist more than one segmentations, both crisp, derived by experts’ analysis, and fuzzy, generated by segmentation algorithms. We attempt to unify the retrieval process for both cases by taking advantage of the feature of fuzziness, and by approximating the frequency with which an expert would confine the boundaries of the fuzzy object in a uniform manner, along with the intrinsic features of a fuzzy, algorithm-generated object. We propose a suitable retrieval mechanism that undertakes the transition from the field of indecisiveness to that of a probabilistic representation, at the same time preserving all the limitations imposed on the data by their initial analysis. Next, we evaluate the retrieval process, by implementing the new method on an already existing data-set and draw conclusions on the effectiveness of the proposed scheme.
3

Image Retrieval in Digital Libraries: A Large Scale Multicollection Experimentation of Machine Learning techniques

Moreux, Jean-Philippe, Chiron, Guillaume 16 October 2017 (has links)
While historically digital heritage libraries were first powered in image mode, they quickly took advantage of OCR technology to index printed collections and consequently improve the scope and performance of the information retrieval services offered to users. But the access to iconographic resources has not progressed in the same way, and the latter remain in the shadows: manual incomplete and heterogeneous indexation, data silos by iconographic genre. Today, however, it would be possible to make better use of these resources, especially by exploiting the enormous volumes of OCR produced during the last two decades, and thus valorize these engravings, drawings, photographs, maps, etc. for their own value but also as an attractive entry point into the collections, supporting discovery and serenpidity from document to document and collection to collection. This article presents an ETL (extract-transform-load) approach to this need, that aims to: Identify and extract iconography wherever it may be found, in image collections but also in printed materials (dailies, magazines, monographies); Transform, harmonize and enrich the image descriptive metadata (in particular with machine learning classification tools); Load it all into a web app dedicated to image retrieval. The approach is pragmatically dual, since it involves leveraging existing digital resources and (virtually) on-the-shelf technologies. / Si historiquement, les bibliothèques numériques patrimoniales furent d’abord alimentées par des images, elles profitèrent rapidement de la technologie OCR pour indexer les collections imprimées afin d’améliorer périmètre et performance du service de recherche d’information offert aux utilisateurs. Mais l’accès aux ressources iconographiques n’a pas connu les mêmes progrès et ces dernières demeurent dans l’ombre : indexation manuelle lacunaire, hétérogène et non viable à grande échelle ; silos documentaires par genre iconographique ; recherche par le contenu (CBIR, content-based image retrieval) encore peu opérationnelle sur les collections patrimoniales. Aujourd’hui, il serait pourtant possible de mieux valoriser ces ressources, en particulier en exploitant les énormes volumes d’OCR produits durant les deux dernières décennies (tant comme descripteur textuel que pour l’identification automatique des illustrations imprimées). Et ainsi mettre en valeur ces gravures, dessins, photographies, cartes, etc. pour leur valeur propre mais aussi comme point d’entrée dans les collections, en favorisant découverte et rebond de document en document, de collection à collection. Cet article décrit une approche ETL (extract-transform-load) appliquée aux images d’une bibliothèque numérique à vocation encyclopédique : identifier et extraire l’iconographie partout où elle se trouve (dans les collections image mais aussi dans les imprimés : presse, revue, monographie) ; transformer, harmoniser et enrichir ses métadonnées descriptives grâce à des techniques d’apprentissage machine – machine learning – pour la classification et l’indexation automatiques ; charger ces données dans une application web dédiée à la recherche iconographique (ou dans d’autres services de la bibliothèque). Approche qualifiée de pragmatique à double titre, puisqu’il s’agit de valoriser des ressources numériques existantes et de mettre à profit des technologies (quasiment) mâtures.

Page generated in 0.1379 seconds