• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Régression non linéaire entre les motifs des fibres nerveuses et la sensibilité cornéenne en utilisant l'apprentissage automatique

Ammarkhodja, Lamia 12 1900 (has links)
Notre projet vise à élucider la relation complexe entre la morphologie des nerfs cornéens et la sensibilité cornéenne, afin d'améliorer la compréhension et le diagnostic des pathologies oculaires. En utilisant deux types d'esthésiomètres : l'esthésiomètre sans contact (NCCA) et le Cochet-Bonnet (CBA) pour mesurer la sensibilité, et en analysant les images de microscopie confocale (IVCM) via le logiciel CCMetrics, nous avons étudié 23 individus, y compris ceux souffrant de diabète et de kératite neurotrophique. Des corrélations négatives significatives entre certains attributs neuronaux et la sensibilité cornéenne ont été identifiées. L'utilisation d'algorithmes d'apprentissage automatique, tels que K-Plus Proches Voisins (KNN), les Réseaux de Neurones (MLP), la Régression à Vecteurs de Support (SVR) et les arbres de décision, a révélé des relations non linéaires complexes. Notre étude encourage l'utilisation de l’apprentissage automatique pour détecter ces relations complexes dans le domaine médical en général et en ophtalmologie en particulier. / Our project aims to clarify the complex relationship between the morphology of corneal nerves and corneal sensitivity, to improve understanding and diagnosis of eye pathologies. We used two types of esthesiometers: a non-contact esthesiometer (NCCA) and Cochet-Bonnet (CBA) for sensitivity measurement and analyzed confocal microscopy (IVCM) images using the software CCMetrics. We studied 23 individuals, including those with diabetes and neurotrophic keratitis. Significant negative correlations between certain neuronal attributes and corneal sensitivity were identified. The use of machine learning algorithms, such as K-Nearest Neighbors (KNN), Neural Networks (MLP), Support Vector Regression (SVR), and decision trees, revealed complex non-linear relationships. Our study advocates using machine learning to detect these complex relationships in the medical field, especially in ophthalmology.

Page generated in 0.0415 seconds