Spelling suggestions: "subject:"cyclin"" "subject:"doxycyclin""
1 |
Functions of interactions and localization of Ankle2 during mitosisWang, Xinyue 12 1900 (has links)
Les cellules cancéreuses sont sujettes à des défauts de reformation de
l'enveloppe nucléaire (EN) après la mitose. BAF est l'une des premières protéines
recrutées sur les chromosomes pour initier la reformation de l’EN. Chez l'humain,
le recrutement de BAF nécessite sa déphosphorylation par la phosphatase PP2A
et Ankle2, une protéine du réticulum endoplasmique (RE) interagissant avec
PP2A. Cependant, les fonctions d’Ankle2 dans la reformation de l’EN ne sont pas
complètement comprises. Pour les étudier, notre laboratoire utilise la drosophile
comme organisme modèle. On ne sait pas si Ankle2 de drosophile fonctionne dans
le NER. Nous avons constaté qu’Ankle2 est nécessaire au recrutement de BAF
pour le réassemblage du noyau après la mitose chez la drosophile. Pour mieux
comprendre son fonctionnement, nous avons identifié des protéines avec
lesquelles BAF interagit : PP2A, Vap33 (une protéine du RE) et certaines Kinases
Dépendantes des Cyclines (CDK). Nous avons cartographié les régions d’Ankle2
impliquées dans ces interactions protéiques grâce à une analyse mutationnelle,
des co-purifications par affinité et des pulldowns GST. Nous avons ensuite généré
des mutants d’Ankle2 spécifiquement déficients pour des interactions et testé leur
capacité à sauver la prolifération et la reformation de l’EN dans des cellules où
Ankle2 endogène est déplété. Nos résultats indiquent que l'interaction entre
Ankle2 et PP2A est essentielle pour sa fonction dans la reformation de l’EN. Une
analyse biochimique suggère qu’Ankle2 fonctionne comme une sous-unité
régulatrice de PP2A. En utilisant une approche phosphoprotéomique, nous avons
confirmé que la déphosphorylation de BAF dépend d’Ankle2 et nous avons aussi
identifié de nouveaux substrats potentiels du complexe PP2A-Ankle2. Nous
concluons que le complexe PP2A-Ankle2 est nécessaire à la déphosphorylation
de BAF et à son recrutement pour le réassemblage du noyau. Les expériences en
cours permettront de déterminer les exigences d'autres interactions d’Ankle2 pour
ses fonctions dans la reformation de l’EN. La suite de ces travaux impliquera
l’étude de la régulation de nouveaux substrats de PP2A-Ankle2 impliqués dans ce
processus. Une reformation de l’EN défectueuse peut provoquer une
4
micronucléation, ce qui peut déclencher une réponse immunitaire innée. La
perturbation de la reformation de l’EN dans les cellules cancéreuses pourrait donc
être bénéfique dans le contexte de l’immunothérapie. / Cancer cells are prone to defects in Nuclear Envelope Reformation (NER) after
mitosis. BAF is one of the first proteins recruited on chromosomes to initiate NER.
In humans, BAF recruitment requires its dephosphorylation by PP2A and Ankle2,
a PP2A-interacting protein of the endoplasmic reticulum (ER). However, the
functions of Ankle2 in NER are incompletely understood. Our lab uses Drosophila
as a model system. Whether Drosophila Ankle2 functions in NER is unknown. We
found that Ankle2 is required for BAF recruitment to reassembling nuclei in
Drosophila. To better understand how it functions, we identified its interactors,
which include PP2A, Vap33 (an ER protein) and Cyclin-Dependent Kinases
(CDKs). We mapped the regions of Ankle2 involved in these protein-protein
interactions through a mutational analysis, affinity co-purifications and GST
pulldowns. We then generated mutant forms of Ankle2 defective in individual
interactions and tested their ability to rescue proliferation and NER in cells depleted
from endogenous Ankle2. Our results indicate that the interaction of Ankle2 with
PP2A is essential for its function in NER. A biochemical analysis suggests that
Ankle2 functions as a regulatory subunit of PP2A. Using a phosphoproteomic
approach, we confirmed that BAF dephosphorylation depends on Ankle2 and also
identified novel candidate substrates of the PP2A-Ankle2 complex. We conclude
that PP2A-Ankle2 complex is required for BAF dephosphorylation and recruitment
to reassembling nuclei. Ongoing experiments will determine the requirements of
other interactions of Ankle2 for its functions in NER. Future work will explore the
regulation of novel PP2A-Ankle2 substrates in this process. Defective NER can
cause micronucleation, which can elicit an innate immune response. Disrupting
NER in cancer cells could be beneficial in the context of immunotherapy.
|
2 |
Développement de biosenseurs peptidiques fluorescents pour la détection des Cdk-cyclines dans les cellules vivantes / Development of fluorescent peptide-based biosensors for probing Cdk-cyclins in living cellsKurzawa, Laetitia 08 December 2011 (has links)
Chez les eucaryotes supérieurs, la progression ordonnée du cycle cellulaire est régie par une dizaine de kinases Cdk-cyclines. Les altérations génétiques ou épigénétiques impliquant des oncogènes ou des gènes codant pour des suppresseurs de tumeurs sont souvent associées à l'expression ou l'activation aberrante des Cdks, favorisant ainsi la prolifération cellulaire incontrôlée et notamment le développement de cancers. Malgré la pertinence oncogénique et thérapeutique de ces protéines, leur détection est restée jusqu'à présent limitée à des méthodes indirectes et invasives. Dans ce contexte, mes travaux de thèse ont permis de développer un biosenseur peptidique fluorescent permettant de reconnaître spécifiquement les Cdk-cyclines. Associé à une stratégie de vectorisation non invasive basée sur l'utilisation de peptides vecteurs pénétrants, le biosenseur a été délivré efficacement dans les cellules. La mise au point d'une quantification ratiométrique du signal a par ailleurs permis d'évaluer l'abondance relative des Cdk-cyclines endogènes. Deux variants plus spécifiques de certains complexes ont pu être développés. Enfin, d'autres versions du biosenseur ont quant à elles permis d'évaluer sa biodistribution in vivo et de mettre au point un essai cellulaire en vue d'un criblage de petites molécules ayant un effet sur l'abondance relative des Cdk-cyclines. / Cdk-cyclins represent key regulators of cell cycle progression among superior eukaryotes. Genetic and epigenetic alterations involving oncogenes or tumor suppressor genes are often associated with aberrant expression or activation of Cdks, leading to the sustained proliferation of cells and by the way to the development of cancers. Despite the oncogenic and therapeutic relevance of these proteins, their detection has so far remained limited to indirect and invasive methods. My Ph.D. thesis work aimed in this context at developing peptidic fluorescent biosensors that specifically recognize Cdk-cyclins. Combined to cell-penetrating peptides, the biosensor was efficiently delivered into cells. Following the development of the signal ratiometric quantification, the relative abundance of endogenous Cdk-cyclins was directly evaluated in living cells. Two other variants, that are more specific towards specific Cdk-cyclin complexes, were also designed. Finally, the development of novel versions of the biosensor allowed us to evaluate its biodistribution in vivo and to set up a cell-based assay to screen small molecules having an effect on Cdk-cyclin relative abundance.
|
3 |
The Rtg1 and Rtg3 proteins are novel transcription factors regulated by the yeast hog1 mapk upon osmotic stressNoriega Esteban, Núria 27 February 2009 (has links)
La adaptación de la levadura Saccharomyces cerevisiae a condiciones de alta osmolaridad está mediada por la vía de HOG ((high-osmolarity glycerol). La activación de esta vía induce una serie de respuestas que van a permitir la supervivencia celular en respuesta a estrés. La regulación génica constituye una respuesta clave para dicha supervivencia. Se han descrito cinco factores de transcripción regulados por Hog1 en respuesta a estrés osmótico. Sin embargo, éstos no pueden explicar la totalidad de los genes regulados por la MAPK Hog1. En el presente trabajo describimos cómo el complejo transcripcional formado por las proteínas Rtg1 y Rtg3 regula, a través de la quinasa Hog1, la expresión de un conjunto específico de genes. Hog1 fosforila Rtg1 y Rtg3, aunque ninguna de estas fosforilaciones son esenciales para regulación transcripcional en respuesta a estrés. Este trabajo también muestra cómo la deleción de proteínas RTG provoca osmosensibilidad celular, lo que indica que la integridad de la vía de RTG es esencial para la supervivencia celular frente a un estrés osmótico. / In Saccharomyces cerevisiae the adaptation to high osmolarity is mediated by the HOG (high-osmolarity glycerol) pathway, which elicits different cellular responses required for cell survival upon osmostress. Regulation of gene expression is a major adaptative response required for cell survival in response to osmotic stress. At least five transcription factors have been reported to be controlled by the Hog1 MAPK. However, they cannot account for the regulation of all of the genes under the control of the Hog1 MAPK. Here we show that the Rtg1/3 transcriptional complex regulates the expression of specific genes upon osmostress in a Hog1-dependent manner. Hog1 phosphorylates both Rtg1 and Rtg3 proteins. However, none of these phosphorylations are essential for the transcriptional regulation upon osmostress. Here we also show that the deletion of RTG proteins leads to osmosensitivity at high osmolarity, suggesting that the RTG-pathway integrity is essential for cell survival upon stress.
|
4 |
SCF cdc4 regulates msn2 and msn4 dependent gene expression to counteract hog1 induced lethalityVendrell Arasa, Alexandre 16 January 2009 (has links)
L'activació sostinguda de Hog1 porta a una inhibició del creixement cel·lular. En aquest treball, hem observat que el fenotip de letalitat causat per l'activació sostinguda de Hog1 és parcialment inhibida per la mutació del complexe SCFCDC4. La inhibició de la mort causada per l'activació sostinguda de Hog1 depèn de la via d'extensió de la vida. Quan Hog1 s'activa de manera sostinguda, la mutació al complexe SCFCDC4 fa que augmenti l'expressió gènica depenent de Msn2 i Msn4 que condueix a una sobreexpressió del gen PNC1 i a una hiperactivació de la deacetilassa Sir2. La hiperactivació de Sir2 és capaç d'inhibir la mort causada per l'activació sostinguda de Hog1. També hem observat que la mort cel·lular causada per l'activació sostinguda de Hog1 és deguda a una inducció d'apoptosi. L'apoptosi induïda per Hog1 és inhibida per la mutació al complexe SCFCDC4. Per tant, la via d'extensió de la vida és capaç de prevenir l'apoptosi a través d'un mecanisme desconegut. / Sustained Hog1 activation leads to an inhibition of cell growth. In this work, we have observed that the lethal phenotype caused by sustained Hog1 activation is prevented by SCFCDC4 mutants. The prevention of Hog1-induced cell death by SCFCDC4 mutation depends on the lifespan extension pathway. Upon sustained Hog1 activation, SCFCDC4 mutation increases Msn2 and Msn4 dependent gene expression that leads to a PNC1 overexpression and a Sir2 deacetylase hyperactivation. Then, hyperactivation of Sir2 is able to prevent cell death caused by sustained Hog1 activation. We have also observed that cell death upon sustained Hog1 activation is due to an induction of apoptosis. The apoptosis induced by Hog1 is decreased by SCFCDC4 mutation. Therefore, lifespan extension pathway is able to prevent apoptosis by an unknown mechanism.
|
Page generated in 0.0406 seconds