• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the influence of CDK11 in developmental and cancer phenotypes

Aldridge, Roland Christopher Lochore January 2018 (has links)
Cyclin-Dependent Kinase 11 (CDK11) is a serine/threonine kinase encoded at human locus 1p36.3 by two paralogous genes CDK11A and CDK11B. CDK11 has diverse roles in the regulation of transcription, splicing, apoptosis and mitosis. In proliferating cells, two predominant isoforms are expressed: CDK11p58 and CDK11p110. CDK11p110 is expressed throughout the cell cycle and regulates transcription and splicing. CDK11p58 is expressed at mitosis via IRES-dependent translation; it mediates mitotic progression and faithful chromosome segregation. Loss of Cdk11 in murine models causes early embryonic lethality, demonstrating that CDK11 is essential for normal development. Furthermore, dysregulated CDK11 expression is associated with numerous late-onset disease states, indicating its importance in adult life. In cancer, abnormal expression of CDK11 correlates with poor prognosis in a variety of tumours. Moreover, deletion of the chromosomal region 1p36.3, containing the CDK11 locus, is frequently observed in cancer and has recently been identified in a case of the development disorder, Cornelia de Lange Syndrome (CdLS). This thesis aimed to examine the functions of CDK11 and the impact of their dysregulation in cancer and developmental phenotypes. The initial aim was to investigate the novel role for CDK11 in regulating autophagy in cancer cells; CDK11 depletion causes a marked autophagy phenotype, with accumulation of autophagy protein LC3. I demonstrate that this CDK11-mediated autophagy occurs as a consequence of mitotic dysregulation. Subsequently, I examined the role of autophagy following aberrant mitosis and chromosome missegregation. I show that autophagy is important in the maintenance of aneuploid karyotypes, with loss of autophagy impairing the survival of aneuploid cell populations. I then investigated the effects of CDK11 in regulating cancer cell motility and determined that CDK11 depletion retards cancer cell migration. However, I was unable to identify any failure in cell adhesion or cell polarization to explain this migration phenotype. Subsequently, I interrogated the CDK11 interactome to further characterize the mechanisms through which CDK11 regulates both novel and established functions. This work indicated the involvement of the distinct CDK11 isoforms in pathways that have not previously been reported. This included the interaction of CDK11p110 with ribosomal and spliceosomal proteins during mitosis and the interaction of CDK11p58 with spliceosomal and proteosomal constituents also during mitosis. These findings may provide the foundation for further study. Finally I describe work undertaken to sequence the CDK11 locus in a cohort of CdLS patients, with no known causative genetic mutation, to investigate CDK11A/CDK11B as candidate disease-associated genes. Although no causative mutation in CDK11A or CDK11B was identifying, sequencing of this region indicated NCBI and UCSC genome assemblies of this locus were inaccurate due to the genomic duplication. This has been confirmed by others and corrected in the most recent genome assemblies.
2

Obtenção das quinases dependentes de ciclinas CDK9 e CDK11 humanas utilizando um sistema bacteriano de expressão (E. coli) / Production of human cyclin-dependent kinases CDK9 and CDK11 using a bacterial expression system (E. coli)

Santos, Níkolas Paparidis Ferreira dos 17 April 2015 (has links)
As CDKs 9 e 11 fazem parte da subfamília de CDKs transcricionais, e portanto desempenham papéis de controle na dinâmica atividade de síntese e processamento do RNA mensageiro pela RNA Polimerase II. Devido à sua capacidade de modular individualmente a atividade dos complexos de transcrição da RNAP II, estas quinases assumem uma grande importância para a regulação da expressão gênica em células eucarióticas. Casos de desregulação da atividade de CDKs transcricionais têm sido frequentemente relacionados a diversas patologias humanas graves, incluindo vários tipos de câncer e também a AIDS (em razão do papel essencial desempenhado pela CDK9 na replicação do HIV. O objetivo deste trabalho é a obtenção das CDKs humanas 9 e 11 através da expressão heteróloga em Escherichia coli, buscando o aperfeiçoamento de métodos para produzir estas enzimas em quantidade e pureza suficientes para aplicação em estudos estruturais. A utilização de um sistema bacteriano oferece muitas vantagens práticas, como a simplicidade da técnica, baixo custo, altos níveis de expressão, e elevado rendimento na purificação do produto. No entanto, a obtenção de quinases humanas ativas a partir de E. coli sempre representou um desafio experimental, devido aos problemas comumente associados à expressão heteróloga. Os resultados apresentados aqui demonstram a possibilidade de se obter a CDK9 humana enzimaticamente ativa pelo reenovelamento in vitro da proteína expressa pela bactéria na forma de corpos de inclusão, após etapas de solubilização e purificação em condições desnaturantes. Por outro lado, a CDK11 humana só pôde ser obtida em uma versão encurtada, consistindo apenas no seu domínio quinase, devido à forte inibição que um trecho N-terminal da sequência mostrou exercer sobre a expressão da proteína. Assim, este trabalho fornece exemplos de como é possível superar algumas das adversidades comuns da expressão heteróloga a fim de se obter CDKs humanas ativas empregando o sistema bacteriano. / CDK9 and CDK11 are members of the subfamily of transcriptional CDKs and therefore play central roles in the control of the dynamic activity of messenger RNA synthesis and processing by RNA polymerase II. Because of their ability to individually modulate the activity of RNAP II transcription complexes, these kinases are of great importance for the regulation of gene expression in eukaryotic cells. Several cases of deregulation of the transcriptional CDKs have been linked to important human diseases, including various types of cancer and also AIDS (due to the essential role of CDK9 in HIV replication). The objective of this work is to obtain human CDK9 and CDK11 heterologously expressed in Escherichia coli, seeking improved methods to produce these enzymes in quantity and purity suitable for structural studies. A bacterial system offers many practical advantages to protein production, such as technical simplicity, low costs, high levels of expression and high purification yield. However, it has always been an experimental challenge to obtain active human kinases from E. coli, because of the problems commonly associated with heterologous expression. The results presented here demonstrate the possibility of obtaining the enzymatically active human CDK9 by in vitro refolding of the protein expressed as bacterial inclusion bodies, after its solubilization and purification under denaturing conditions. Human CDK11, on the other hand, could only be obtained in a shortened form consisting just of its kinase domain, due to the strong inhibition that an N-terminal stretch exerts on the protein\'s own expression. Therefore, this work provides examples of how it is possible to overcome some of the common adversities of heterologous expression in order to obtain active human CDKs through the bacterial system.
3

Obtenção das quinases dependentes de ciclinas CDK9 e CDK11 humanas utilizando um sistema bacteriano de expressão (E. coli) / Production of human cyclin-dependent kinases CDK9 and CDK11 using a bacterial expression system (E. coli)

Níkolas Paparidis Ferreira dos Santos 17 April 2015 (has links)
As CDKs 9 e 11 fazem parte da subfamília de CDKs transcricionais, e portanto desempenham papéis de controle na dinâmica atividade de síntese e processamento do RNA mensageiro pela RNA Polimerase II. Devido à sua capacidade de modular individualmente a atividade dos complexos de transcrição da RNAP II, estas quinases assumem uma grande importância para a regulação da expressão gênica em células eucarióticas. Casos de desregulação da atividade de CDKs transcricionais têm sido frequentemente relacionados a diversas patologias humanas graves, incluindo vários tipos de câncer e também a AIDS (em razão do papel essencial desempenhado pela CDK9 na replicação do HIV. O objetivo deste trabalho é a obtenção das CDKs humanas 9 e 11 através da expressão heteróloga em Escherichia coli, buscando o aperfeiçoamento de métodos para produzir estas enzimas em quantidade e pureza suficientes para aplicação em estudos estruturais. A utilização de um sistema bacteriano oferece muitas vantagens práticas, como a simplicidade da técnica, baixo custo, altos níveis de expressão, e elevado rendimento na purificação do produto. No entanto, a obtenção de quinases humanas ativas a partir de E. coli sempre representou um desafio experimental, devido aos problemas comumente associados à expressão heteróloga. Os resultados apresentados aqui demonstram a possibilidade de se obter a CDK9 humana enzimaticamente ativa pelo reenovelamento in vitro da proteína expressa pela bactéria na forma de corpos de inclusão, após etapas de solubilização e purificação em condições desnaturantes. Por outro lado, a CDK11 humana só pôde ser obtida em uma versão encurtada, consistindo apenas no seu domínio quinase, devido à forte inibição que um trecho N-terminal da sequência mostrou exercer sobre a expressão da proteína. Assim, este trabalho fornece exemplos de como é possível superar algumas das adversidades comuns da expressão heteróloga a fim de se obter CDKs humanas ativas empregando o sistema bacteriano. / CDK9 and CDK11 are members of the subfamily of transcriptional CDKs and therefore play central roles in the control of the dynamic activity of messenger RNA synthesis and processing by RNA polymerase II. Because of their ability to individually modulate the activity of RNAP II transcription complexes, these kinases are of great importance for the regulation of gene expression in eukaryotic cells. Several cases of deregulation of the transcriptional CDKs have been linked to important human diseases, including various types of cancer and also AIDS (due to the essential role of CDK9 in HIV replication). The objective of this work is to obtain human CDK9 and CDK11 heterologously expressed in Escherichia coli, seeking improved methods to produce these enzymes in quantity and purity suitable for structural studies. A bacterial system offers many practical advantages to protein production, such as technical simplicity, low costs, high levels of expression and high purification yield. However, it has always been an experimental challenge to obtain active human kinases from E. coli, because of the problems commonly associated with heterologous expression. The results presented here demonstrate the possibility of obtaining the enzymatically active human CDK9 by in vitro refolding of the protein expressed as bacterial inclusion bodies, after its solubilization and purification under denaturing conditions. Human CDK11, on the other hand, could only be obtained in a shortened form consisting just of its kinase domain, due to the strong inhibition that an N-terminal stretch exerts on the protein\'s own expression. Therefore, this work provides examples of how it is possible to overcome some of the common adversities of heterologous expression in order to obtain active human CDKs through the bacterial system.

Page generated in 0.047 seconds