• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CDMA Channel Selection Using Switched Capacitor Technique

Nejadmalayeri, Amir Hossein January 2001 (has links)
CDMA channel selection requires sharp as well as wide-band Filtering. SAW Filters which have been used for this purpose are only available in IF range. In direct conversion receivers this has to be done at low frequencies. Switched Capacitor technique has been employed to design a low power, highly selective low-pass channel select Filter for CDMA wireless receivers. The topology which has been chosen ensures the low sensitivity of the Filter response. The circuit has been designed in a mixed-mode 0. 18u CMOS technology working with a single supply of 1. 8 V while its current consumption is less than 10 mA.
2

CDMA Channel Selection Using Switched Capacitor Technique

Nejadmalayeri, Amir Hossein January 2001 (has links)
CDMA channel selection requires sharp as well as wide-band Filtering. SAW Filters which have been used for this purpose are only available in IF range. In direct conversion receivers this has to be done at low frequencies. Switched Capacitor technique has been employed to design a low power, highly selective low-pass channel select Filter for CDMA wireless receivers. The topology which has been chosen ensures the low sensitivity of the Filter response. The circuit has been designed in a mixed-mode 0. 18u CMOS technology working with a single supply of 1. 8 V while its current consumption is less than 10 mA.

Page generated in 0.063 seconds