• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
2

CFD-Calculations to a Core Catcher Benchmark

Willschütz, Hans-Georg 31 March 2010 (has links) (PDF)
There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN.For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-e-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes.
3

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
4

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
5

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
6

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
7

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
8

Ignition enhancement for scramjet combustion

McGuire, Jeffrey Robert, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2007 (has links)
The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component of the investigation contained Computational Fluid Dynamic (CFD) calculations of an ignition delay study, a 2D pre-mixed flow over flat plate at a constant angle to the freestream, and through a generic 2D scramjet model. The focal point of the investigation however examined the complex 3D flow through a generic scramjet model. Five experimental test conditions were ex- amined over flow enthalpies from 3.4 MJ/kg to 6.4 MJ/kg. All test conditions simulated flight at 21000 metres ([symbol=almost equal to] 70000 ft), while the equivalent flight Mach number varied from approximately 8.5 at the lowest enthalpy, to approximately Mach 12 at the highest enthalpy condition. The presence of H2 fuel injected in the intake caused a separated region to form on the lower surface of the model at the entrance to the combustor. A fraction of the total mass of fuel was entrained in this separated region, providing long residence times, hence increased time for the chemical reactions that lead to ignition to occur. In addition, extremely high temperatures were found to exist between each fuel jet. Both fuel and air are present in these regions, therefore the chance of ignition in these regions is high. Streamlines passing through the recirculation zone ignited within this zone, while streamlines passing between the fuel jets ignited soon after entry into the combustor. The first instance of a pressure rise from combustion was observed on the centreline of the model where the reflected bow shock around the fuel jets crossed the centreline of the combus- tor. Upstream of this location the static pressure of the flow was too low for the chemical reactions that release heat to occur. The comparison between the experimental and computational results was lim- ited due to inaccuracies in modelling the thermal state of the gas in the CFD calculations. The gas was modelled as being in a state of thermal equilibrium at all times, which incorrectly models the freestream flow from the nozzle of the shock tunnel, and also the flow downstream of oblique shock wave within the scramjet model. As a result combustion occurs sooner in the CFD calculations than in the experimental result.
9

CFD-Calculations to a Core Catcher Benchmark

Willschütz, Hans-Georg January 1999 (has links)
There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN.For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-e-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes.
10

A NUMERICAL INVESTIGATION OF BUBBLE-INDUCED LIQUID AGITATION AND BUBBLE DYNAMICS IN STRATIFIED FLOWS

Maathangi Ganesh (10730739) 30 April 2021 (has links)
<div>Mixing of stratified fluids due to motion of bubble swarms can happen through two major mechanisms. The first is the capture and transport of heavier liquid into the lighter layers by the bubble wake. The second is the mixing due to turbulent dispersion. Stratification also affects bubble dynamics in various ways, namely by reducing the horizontal and vertical bubble fluctuations and extent, altering the drag experienced by rising bubbles, and changing the wake dynamics. The objective of this study is to understand these explained phenomena by decoupling their effects from each other and studying them individually. CFD offers powerful capabilities to achieve the decoupling and perform in-depth analysis of the fluid flow. </div><div><br></div><div>Firstly, the study of mixing induced in stratified fluids by bubbly flow in a Hele-Shaw Cell will be performed. Simulations are run for a range of void fractions and Froude numbers. The confinement prevents turbulence production, and mixing occurs primarily due to transport of colder liquid into the hotter layers by the bubble wake. Bubbles move in a zigzag motion attributed to the periodic vortex shedding in their wake. We report the formation of horizontal clusters and establish a direct correlation between the size of clusters and the rise velocity of the bubbles. We report an increase in the buoyancy flux across the isopycnals as the void fraction increases. The fraction of energy production due to the buoyancy flux increases with the strength of stratification, giving rise to a higher mixing efficiency. At the same time, cross isopycnal diffusion is higher at weaker stratification strengths.</div><div><br></div><div>Subsequently, direct numerical simulations of up to 146 bubbles rising in unbounded stratified fluids are performed. Both the bubble dynamics and destratification effects caused by the bubble motion are analyzed. The importance of bubble deformability and bubble Reynolds numbers on the induced background mixing are studied by varying the $E\ddot{o}tv\ddot{o}s$ number in the range 1.55 to 4.95 and Reynolds number in the range 25 to 200. Highly deformable, high Reynolds number bubbles undergo path instabilities and give rise to higher levels of mixing. Liquid and bubble velocity fluctuations and pseudo-turbulence caused by the bubble motion in the unconfined setting are examined and are seen to play an important role in mixing statistics. An increase in turbulent kinetic energy (TKE) levels with void fraction is noted. TKE levels are seen to decrease slightly as the stratification strength is increased, indicating increasing stability and resistance to destratification. Regardless of the stratification strength, a kinetic energy spectrum slope value between $-3 \sim -3.25$ is reported depending on Reynolds number. The dependence of mixing parameters on the void-fraction of bubbles and stratification strength of the liquid is also presented. </div><div><br></div><div>Next, the study of buoyancy driven motion of a single air bubble in stratified liquid is undertaken. A range of parameters including Froude number, Reynolds number and Bond number are explored. The Reynolds and Bond numbers will be maintained at values where the bubble motion and wake can be assumed to be axisymmetric. Wake dynamics and drift-volumes associated with the bubble rising in the stratified fluid are analyzed. The presence of secondary and tertiary vortices, which are alternating in direction, in the wake of the bubble due to the negative buoyant force experienced by the isopycnals is reported. The isopycnals oscillate before coming back to their stable state and the frequency of oscillations increases with stratification strength. The dependence of drag coefficient, determined by an unsteady force balance, and steady state bubble velocities, on the above mentioned parameters are studied. Analysis of bubble rise in partial stratification reveals the differences between homogeneous and stratified mediums.</div><div><br></div><div>Since most stratified bubbly flows occur near the free surface, an attempt is made at modeling the bubble rise up-to the free surface and subsequent bubble bursting. A brief study of in-line bubble coalescence is also attempted and potential future work for bubbly flows with topological changes is discussed.</div>

Page generated in 0.1082 seconds