• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Test of concrete flanged beams reinforced with CFRP bars

Ashour, Ashraf F., Family, M. January 2006 (has links)
Tests results of three flanged and two rectangular cross-section concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars are reported. In addition, a companion concrete flanged beam reinforced with steel bars is tested for comparison purposes. The amount of CFRP reinforcement used and flange thickness were the main parameters investigated in the test specimens. One CFRP reinforced concrete rectangular beam exhibited concrete crushing failure mode, whereas the other four CFRP reinforced concrete beams failed owing to tensile rupture of CFRP bars. The ACI 440 design guide for FRP reinforced concrete members underestimated the moment capacity of beams failed owing to CFRP tensile rupture and reasonably predicted deflections of the beams tested. A simplified theoretical analysis for estimating the moment capacity of concrete flanged beams reinforced with FRP bars was developed. The experimental moment capacity of the CFRP reinforced concrete beams tested compared favourably with that predicted by the theoretical analysis developed.
2

Tests of concrete flanged beams reinforced with CFRP bars.

Ashour, Ashraf, Family, M. 11 1900 (has links)
Yes / Tests results of three flanged and two rectangular cross-section concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars are reported. In addition, a companion concrete flanged beam reinforced with steel bars is tested for comparison purposes. The amount of CFRP reinforcement used and flange thickness were the main parameters investigated in the test specimens. One CFRP reinforced concrete rectangular beam exhibited concrete crushing failure mode, whereas the other four CFRP reinforced concrete beams failed due to tensile rupture of CFRP bars. The ACI 440 design guide for FRP reinforced concrete members underestimated the moment capacity of beams failed due to CFRP tensile rupture and reasonably predicted deflections of the beams tested. A simplified theoretical analysis for estimating the moment capacity of concrete flanged beams reinforced with FRP bars was developed. The experimental moment capacity of the CFRP reinforced concrete beams tested compared favourably with that predicted by the theoretical analysis developed.
3

Size effect on shear strength of FRP reinforced concrete beams

Ashour, Ashraf, Kara, Ilker F. 07 December 2013 (has links)
yes / This paper presents test results of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer (CFRP) bars and without vertical shear reinforcement. All beams were tested under a two-point loading system to investigate shear behavior of CFRP reinforced concrete beams. Beam depth and amount of CFRP reinforcement were the main parameters investigated. All beams failed due to a sudden diagonal shear crack at almost 45°. A simplified, empirical expression for the shear capacity of FRP reinforced concrete members accounting for most influential parameters is developed based on the design-by-testing approach using a large database of 134 specimens collected from the literature including the beams tested in this study. The equations of six existing design standards for shear capacity of FRP reinforced concrete beams have also been evaluated using the large database collected. The existing shear design methods for FRP reinforced concrete beams give either conservative or unsafe predictions for many specimens in the database and their accuracy are mostly dependent on the effective depth and type of FRP reinforcement. On the other hand, the proposed equation provides reasonably accurate shear capacity predictions for a wide range of FRP reinforced concrete beams.
4

Tests of continuous concrete slabs reinforced with carbon fibre reinforced polymer bars

Mahroug, Mohamed E.M., Ashour, Ashraf, Lam, Dennis 11 June 2014 (has links)
No / Although several research studies have been conducted on simply supported concrete elements reinforced with fibre reinforced polymer (FRP) bars, there is little reported work on the behaviour of continuous elements. This paper reports the testing of four continuously supported concrete slabs reinforced with carbon fibre reinforced polymer (CFRP) bars. Different arrangements of CFRP reinforcement at mid-span and over the middle support were considered. Two simply supported concrete slabs reinforced with under and over CFRP reinforcement and a continuous concrete slab reinforced with steel bars were also tested for comparison purposes. All continuous CFRP reinforced concrete slabs exhibited a combined shear–flexure failure mode. It was also shown that increasing the bottom mid-span CFRP reinforcement of continuous slabs is more effective than the top over middle support CFRP reinforcement in improving the load capacity and reducing mid-span deflections. The ACI 440.1R–06 formulas overestimated the experimental moment at failure but better predicted the load capacity of continuous CFRP reinforced concrete slabs tested. The ACI 440.1R–06, ISIS–M03–07 and CSA S806-06 design code equations reasonably predicted the deflections of the CFRP continuously supported slabs having under reinforcement at the bottom layer but underestimated deflections of continuous slabs with over-reinforcement at the bottom layer.
5

Behaviour of continuous concrete slabs reinforced with FRP bars : experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabs

Mahroug, Mohamed Elarbi Moh January 2013 (has links)
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections. Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS-M03-07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440-1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested. On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment-curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.
6

Comportement au fluage de poutres hétérogènes bois-BFUP assemblées par collage / Creep behaviour of heterogeneous glulam-UHPFRC beams assembled by bonding

Kong, Kanhchana 15 September 2015 (has links)
Ce travail de recherche vise à évaluer le comportement au fluage de nouvelles structures composites en associant trois matériaux: le bois, le béton fibré ultra-haute performance (BFUP) et des armatures polymères renforcées de fibres de carbone (PRFC). Le but de la conception d'une telle section hybride est de faire usage des meilleures caractéristiques de chaque matériau afin d'augmenter sa capacité portante à l'ultime et/ou en service. Aussi, d'un point de vue du comportement mécanique, cette solution de renforcement vise à apprécier et hiérarchiser l'intérêt d'une telle solution liée aux effets déférés, particulièrement au fluage. La première étape consiste à mener une analyse expérimentale sur le comportement en statique de poutres hétérogènes bois-BFUP. Elle est exécutée afin de mieux comprendre le mécanisme d'endommagement ainsi que la performance pour définir le comportement au fluage. Pour cela, une campagne expérimentale en flexion quatre points portant sur trois poutres, dont une poutre témoin, a été conduite sous sollicitation statique. Les résultats obtenus confirment que les poutres hétérogènes Bois-BFUP apportent une optimisation de capacité portante ainsi que de la rigidité. Les poutres hybrides ont permis d'obtenir le même mode de rupture en flexion et la première rupture s'est produite dans la partie comprimée de BFUP supérieur. La seconde partie de la recherche est consacrée à l'analyse du comportement au fluage de poutres hétérogènes bois-BFUP nécessaire pour prédire les déformations à long terme dans des structures composites hybrides. Dans cette étude, deux types d'essai ont été réalisés : essai en environnement contrôlé et essai en environnement non contrôlé (extérieur). En environnement contrôlé les essais fluage ont commencé sous une charge constante de 24 kN dans le laboratoire avec des températures de 20±5 °C et une humidité relative entre 40% et 60%. Ces conditions climatiques peuvent être considérées comme un environnement de classe 1, conformément à l'Eurocode 5. Les résultats ont montré que la flèche de fluage de la poutre renforcée augmente peu tout au long de l'essai. A l'inverse de ces résultats, l'essai de fluage en environnement variable à l'extérieur du laboratoire, qui peut être considéré comme environnement de classe 3 suivant l'Eurocode 5, montre que les effets différés du bois et du béton jouent un rôle très important dans l'évolution de la flèche finale / This dissertation aims to evaluate the creep behaviour of a new composite structure combined three materials: the wood, the ultra-high performance fibre-reinforced concrete (UHPFRC) and the polymer fibre reinforced carbon (CFRP) according to their advantages and performances. The conception of such hybrid section is to use the best characteristics of each material to increase its bearing capacity in the ultimate and / or in service. Furthermore, from the point of view of design, this strengthening solution is to assess and prioritize the interests to reduce the deformation caused by the delayed effects, particularly caused by creep. The first part investigated an experimental analysis of the static behaviour of the wood-UHPFRC beam, and should be performed to understand the mechanism of the hybrid beam as well as the performance which are the directions to identify the creep behaviour. A four-points bending test setup on three beams, one beam witness, was conducted under static loading. The results confirm that heterogeneous Timber-UHPFRC beams provide an optimization of bearing capacity and stiffness. The hybrid beams have produced the same flexural mode of failure and the first crack occurred in the upper part of compressed UHPFRC. The second part of the research is devoted to the analysis of creep behaviour of heterogeneous wood beams UHPC necessary to predict long-term deformations in composite structures. In this study, two types of test setups were conducted: test in a sheltered and outdoor environment. In the sheltered environment, the creep test began under a constant load of 24 kN in the laboratory with temperatures of 20 ± 5 °C and a relative humidity between 40% and 60%. These climatic conditions can be considered as the service class 1, according to Eurocode 5. The results showed that the creep deflection of the reinforced beam gradually increases throughout the test. Unlike these results, the creep test in a variable environment outside the laboratory, which can be considered Class Service 3 to Eurocode 5, shows that the effect of time dependency behaviour of wood and concrete plays a very important role in the evolution of the creep deflection of the hybrid beams
7

Behaviour of continuous concrete slabs reinforced with FRP bars. Experimental and computational investigations on the use of basalt and carbon fibre reinforced polymer bars in continuous concrete slabs.

Mahroug, Mohamed E.M. January 2013 (has links)
An investigation on the application of basalt fibre reinforced polymer (BFRP) and carbon fibre reinforced polymer (CFRP) bars as longitudinal reinforcement for simple and continuous concrete slabs is presented. Eight continuously and four simply concrete slabs were constructed and tested to failure. Two continuously supported steel reinforced concrete slabs were also tested for comparison purposes. The slabs were classified into two groups according to the type of FRP bars. All slabs tested were 500 mm in width and 150 mm in depth. The simply supported slabs had a span of 2000 mm, whereas the continuous slabs had two equal spans, each of 2000 mm. Different combinations of under and over FRP (BFRP/CFRP) reinforcement at the top and bottom layers of slabs were investigated. The continuously supported BFRP and CFRP reinforced concrete slabs exhibited larger deflections and wider cracks than the counterpart reinforced with steel. The experimental results showed that increasing the bottom mid-span FRP reinforcement of continuous slabs is more effective than the top over middle support FRP reinforcement in improving the load capacity and reducing mid-span deflections. Design guidelines have been validated against experimental results of FRP reinforced concrete slabs tested. ISIS¿M03¿07 and CSA S806-06 equations reasonably predicted the deflections of the slabs tested. However, ACI 440¿1R-06 underestimated the deflections, overestimated the moment capacities at mid-span and over support sections, and reasonably predicted the load capacity of the continuous slabs tested. On the analytical side, a numerical technique consisting of sectional and longitudinal analyses has been developed to predict the moment¿curvature relationship, moment capacity and load-deflection of FRP reinforced concrete members. The numerical technique has been validated against the experimental test results obtained from the current research and those reported in the literature. A parametric study using the numerical technique developed has also been conducted to examine the influence of FRP reinforcement ratio, concrete compressive strength and type of reinforcement on the performance of continuous FRP reinforced concrete slabs. Increasing the concrete compressive strength decreased the curvature of the reinforced section with FRP bars. Moreover, in the simple and continuous FRP reinforced concrete slabs, increasing the FRP reinforcement at the bottom layer fairly reduced and controlled deflections.

Page generated in 0.0248 seconds