• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Evaluation of a Continuous Fibre Reinforced Thermoplastic Prepreg Manufacturing Line

Tian, Ran 18 August 2022 (has links)
Thermoset resin based fibre reinforced polymer-matrix composite materials (PMCs) have provided excellent solutions to many industries based on their great specific strength, high design freedom and other characteristics such as water resistance, corrosion resistance, tailorable electrical conductivity, tailorable thermal performance and many others. But, despite of all their benefits, the materials are also limited by uneconomical recycling and management post service life, demanding raw materials storage conditions, less than ideal environmental impact during manufacturing, and relatively low productivity. The purpose of the present work was to investigate economically feasible production of a continuous fibre reinforced thermoplastic composite (CFRTP) alternative solution, for an existing company, that could overcome weak points and limitations of thermosets under increasing environmental needs and pursuit of higher efficiency. Work aimed at fulfilling the following objectives: 1) document existing thermoplastic composite materials and understand selected manufacturing methods, raw materials, mechanical behaviour and operational feasibility; 2) select, design, and build a fully functional CFRTP manufacturing line; 3) design and run Taguchi methods to analyze the product using multifactorial ANOVA to gently introduce rigorous quality control; and 4) identify the input parameters that most affect output product quality, that could be used to optimize the process, as well as input parameters that have no statistically significant effects on the output and therefore do not warrant investment in funds and time in order to control them. Throughout the work, it was showed that CFRTP could been produced efficiently with consistent quality. Unidirectional prepreg can be used directly or further processed for usage in many industries such as pipelines, light construction and automotive components. The design of the CFRTP solution fulfilled necessary conditions and successfully produced CFRTP unidirectional prepreg product. Prepreg produced under 16 different sets of conditions was tested and data was collected. Using Taguchi methods, this study found that the fibre volume fraction, condition of impregnation mould, condition of cooling rollers and extruding temperature all have statistically significant effects on product quality. But limited by restriction from time and cost by production based environments, it is imperative to conduct this work perfectly, in later research a more focused study can be done based on the results of this study. Still, thesis demonstrates a CFRTP mass production solution, verifies CFRTP impregnation and offers a significant route for upgrading environmental protection and production efficiency. The work also identifies key parameters that affect unidirectional prepregs properties.
2

Laser Based Pre-treatment of Secondary Bonded Composite T-joints for Improved Energy Dissipation

Hashem, Mjed H. 06 April 2021 (has links)
This study demonstrates an experimental investigation into the efficacy of a novel surface pre-treatment technique to improve the toughness and energy dissipation of composite CFRP T-joints. This novel technique optimizes CO2 laser irradiations to remove surface contaminations and modify the surface morphology of CFRP T-joint adherents. Pull-off tests were performed on T-joints that experienced peel-ply (PP) treatment and to those that were ablated with 10% (LC) and 30% (LA) laser power respectively. A further developed alternative pattern between LA and LC surface pre-treatment was examined. Two different quasi-isotropic stacking sequences have been studied by having surface fibers aligned in 0° and 45° direction. A series of surface roughness analysis, optical microscopy, SEM, CT scan and pictorial findings have been carried out to characterize the surface morphologies and failure modes prior to and after the failure. The patterning technique promoted non-local damage mechanisms which resulted in large improvements in the toughness and energy dissipation as compared to the other pre-treatment techniques. Up to ~12 times higher energy dissipation compared to peel-ply pre-treated T-joint were achieved with patterned T-joint structures that are stacked with a 0° surface fiber direction.

Page generated in 0.0197 seconds