1 |
Simulação perfeita da distribuição normal multivariada truncada / Perfect simulation of the multivariate truncated normal distributionCampos, Thiago Feitosa 09 March 2010 (has links)
No presente trabalho apresentamos o algoritmo de simulacão perfeita CFTP, proposto em Propp & Wilson (1996). Seguindo o trabalho de Philippe & Robert (2003) implementamos o CFTP gerando amostras da distribuicão normal bivariada truncada no quadrante positivo. O algoritmo proposto e comparado com o amostrador de Gibbs e o método de rejeição. Finalmente, apresentamos sugestões para a implementação do CFTP para gerar amostras da distribuição normal truncada em dimensões maiores que dois e a geração de amostras em conjuntos diferente do quadrante positivo. / This project will display the CFTP perfect simulation algorithm presented at Propp & Wilson (1996). According to Philippe & Robert (2003) will be implemented the CFTP providing samples of the bivariate normal distribution truncated at the positive quadrant. The proposed algorithm is compared to the samples generated by Gibbs Sampler and by the rejection sampling ( or acceptance rejection method or \"accept-reject algorithm\"). Finally, suggestions to the implementation of CFTP in order to produce truncated normal distribution samples at bigger dimensions than two and the provide a diferent set of samples from the positive quadrant.
|
2 |
Simulação perfeita da distribuição normal multivariada truncada / Perfect simulation of the multivariate truncated normal distributionThiago Feitosa Campos 09 March 2010 (has links)
No presente trabalho apresentamos o algoritmo de simulacão perfeita CFTP, proposto em Propp & Wilson (1996). Seguindo o trabalho de Philippe & Robert (2003) implementamos o CFTP gerando amostras da distribuicão normal bivariada truncada no quadrante positivo. O algoritmo proposto e comparado com o amostrador de Gibbs e o método de rejeição. Finalmente, apresentamos sugestões para a implementação do CFTP para gerar amostras da distribuição normal truncada em dimensões maiores que dois e a geração de amostras em conjuntos diferente do quadrante positivo. / This project will display the CFTP perfect simulation algorithm presented at Propp & Wilson (1996). According to Philippe & Robert (2003) will be implemented the CFTP providing samples of the bivariate normal distribution truncated at the positive quadrant. The proposed algorithm is compared to the samples generated by Gibbs Sampler and by the rejection sampling ( or acceptance rejection method or \"accept-reject algorithm\"). Finally, suggestions to the implementation of CFTP in order to produce truncated normal distribution samples at bigger dimensions than two and the provide a diferent set of samples from the positive quadrant.
|
3 |
Sampling from the Hardcore ProcessDodds, William C 01 January 2013 (has links)
Partially Recursive Acceptance Rejection (PRAR) and bounding chains used in conjunction with coupling from the past (CFTP) are two perfect simulation protocols which can be used to sample from a variety of unnormalized target distributions. This paper first examines and then implements these two protocols to sample from the hardcore gas process. We empirically determine the subset of the hardcore process's parameters for which these two algorithms run in polynomial time. Comparing the efficiency of these two algorithms, we find that PRAR runs much faster for small values of the hardcore process's parameter whereas the bounding chain approach is vastly superior for large values of the process's parameter.
|
4 |
Sampling from the Hardcore ProcessDodds, William C 01 January 2013 (has links)
Partially Recursive Acceptance Rejection (PRAR) and bounding chains used in conjunction with coupling from the past (CFTP) are two perfect simulation protocols which can be used to sample from a variety of unnormalized target distributions. This paper first examines and then implements these two protocols to sample from the hardcore gas process. We empirically determine the subset of the hardcore process's parameters for which these two algorithms run in polynomial time. Comparing the efficiency of these two algorithms, we find that PRAR runs much faster for small values of the hardcore process's parameter whereas the bounding chain approach is vastly superior for large values of the process's parameter.
|
Page generated in 0.0225 seconds