• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 28
  • 28
  • 21
  • 17
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 382
  • 382
  • 74
  • 70
  • 68
  • 50
  • 47
  • 46
  • 43
  • 40
  • 37
  • 36
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Novel conducting polymeric materials: 1. Fluoroalkylated polythiophenes 2. Stacked oligothiophenes as models for the interchain charge transfer in conducting polymers

Li, Ling 12 July 2004 (has links)
Polythiophenes have great potential as semiconductors for use in organic field effect transistors and light emitting diodes. Recent research has been focused on the design, synthesis and characterization of fluorinated polythiophenes and oligothiophenes. Various fluoroalkyl side chains have been introduced to induce polymer self-assembly, to control the electronic properties of the conjugated backbone, and to modify the solubility of the polymer in supercritical CO2. This work led to the preparation of poly(3-(perfluorooctyl)thiophene), which is one of only a few examples of n-dopable polythiophenes, and is the first supercritical CO2-soluble conducting polymer. An alternating copolymer consisting of 3-perfluoroakyl and 3-alkylthiophene units has been synthesized. This polymer, with alternating electron-donating and withdrawing substituents, has a high quantum yield for fluorescence in solution relative to the two homopolymers, and strong fluorescence in solid state. Based on the study on its nanocrystals, the unusual photophyiscs may be due to the formation of the supramolecular structure with hexagonal packing. A novel thiophene monomer, 3-(1,1-difluorooctyl)thiophene, was prepared to further tune the electronic structure of polythiophenes by changing the fluorination pattern of side chains, while retaining solubility in organic solvents by virtue of the hydrocarbon side chain. a-Hexyl-w-perfluorohexylsexithiophene was synthesized to make a novel amphiphilic material for use in TFTs. Models for interchain charge transfer in doped conducting polymers were also developed. Stacked and unstacked conjugated oligomers have been synthesized as models for conducting polymers. The bis(radical cation) form and the dication-neutral form of compounds in which conjugated oligomers are held in a stacked arrangement are shown to coexist and in equilibrium with each other. The coexistence of these two forms further suggests that both may serve as charge carriers. Interconversion between these forms by disproportionation mimics a possible mechanism for charge migration in doped conjugated polymers.
132

Investigation of the Role of Groove Hydration and Charged Nucleosides in DNA Charge Transfer

Onyemauwa, Frank Okezie 11 August 2006 (has links)
Structural analyses of DNA oligonucleotides indicate the presence of bound water molecules in the major and minor grooves of DNA. These water molecules participate in DNA charge transfer by their reaction with guanosine radical cation to form 7,8-dihydro-8-oxo-guanine (8-oxoG), which when treated with a base leads to DNA strand cleavage. We probed the reaction of guanosine radical cation with water with series of alkyl substituted cytidines and thymidines by incorporating the modified nucleosides into anthraquinone linked DNA duplexes and irradiating them with UV light at 350 nm. The incorporation of these hydrophobic substituents disrupt the DNA spine of hydration, and we have observed that these modifications in the major and minor groove do not effect the trapping or long distance hopping of radical cations in DNA. The second part of the work reported herein examines the role of charged nucleosides in long range charge transfer in duplex DNA. DNA methylation is a naturally occurring process mediated by enzymes responsible for such functions in biological systems. Hypermethylation of DNA can also occur as a result of environmental alkylating agents leading to mutation of the affected cells. Methylation of the ring nitrogen of a purine base can introduce a positive charge in the ring resulting in the cleavage of the glycosidic bond of the nucleoside. To understand the role of a charged nucleoside on charge transfer in DNA, we designed and synthesized cationic nucleoside mimics, which were incorporated into anthraquinone-linked DNA strands and irradiated at 350 nm. The presence of the cationic bases on the duplexes inhibits the migrating hole from hopping along the DNA strand, and induces a prominent local structural distortion of the DNA as a result of the charged nucleobase.
133

Distyryl-boradiazaindacenes As Red And Nir Switches

Isbasar, Gullu Ceyda 01 June 2007 (has links) (PDF)
Two novel distyryl-boradiazaindacene dyes with dimethylaminophenyl and pyridyl appendages, display opposite spectral shifts on protonation with trifluoroacetic acid in organic solvents. This bidirectional switching of the dyes can be shown to be directly related to ICT donor and acceptor characteristics of the dyes. Thus, it has been demonstrated that the switching behavior of the red to NIR emitting dyes can be altered by simple structural modifications.
134

Intramolecular electron transfer in mixed-valence triarylamines

Lancaster, Kelly 29 July 2009 (has links)
Mixed-valence compounds are of interest as model systems for the study of electron transfer reactions. The intramolecular electron transfer processes and patterns of charge delocalization in such compounds depend on the interplay between the electronic (V) and the vibronic (L) coupling. One can obtain both parameters from a Hush analysis of the intervalence band that arises upon optical intramolecular electron transfer if the band is intense and well-separated from other bands. This is quite often the case for mixed-valence triarylamines. As such, both Hush analysis and simulation of the intervalence band are widely used to classify these compounds as charge localized (class-II) or delocalized (class-III). Yet one must estimate the diabatic electron transfer distance (R) to calculate V in the Hush formalism. For mixed-valence triarylamines, R is commonly taken as the N-N distance; we show this to be a poor approximation in many cases. The activation barrier to thermal intramolecular electron transfer in a class-II mixed-valence compound is also related to the parameters V and L. Thus, if one can capture the rate of thermal electron transfer at multiple temperatures, then two experimental methods exist by which to extract the microscopic parameters. One technique that is widely used for organic mixed-valence compounds is variable-temperature electron spin resonance (ESR) spectroscopy. But this method is only rarely used to determine thermal electron transfer rates in mixed-valence triarylamines, as the electron transfer in most of the class-II compounds with distinct intervalence bands is too fast to observe on the ESR timescale. We show, for the first time, that one can use ESR spectroscopy to measure thermal electron transfer rates in such compounds. Simulation of ESR spectra based on density functional theory calculation and comparison with optical data also uncover the nature (i.e., adiabatic or nonadiabatic) of the electron transfer process.
135

Two-photon absorption in cruciform and dipolar chromophores: excitonic interactions and response to metal ions

Siegel, Nisan Naftali 04 June 2010 (has links)
Structure-property relationships for two-photon absorption (2PA) in branched organic chromophores is a topic of current interest, as is the design of chromophores with advantageous properties for two-photon laser scanning microscopy (2PLSM). The main goals of this dissertation were to study and explain the one-photon absorption (1PA) and 2PA properties of cruciform chromophores based on 1,4-distyryl-2,5-bis(phenylethynyl)benzene with varying electron donor (D) and acceptor (A) groups, and to characterize the 2PLSM-relevant response of some of these chromophores and a set of dipolar chromophores to binding with zinc ions. The compounds were studied by 1PA, fluorescence and 2PA spectroscopy. A ππ* exciton model was developed to explain the spectral properties of the 1,4-distyryl-2,5-bis(phenylethynyl)benzene cruciform with no D or A groups or with four identical D groups at the termini of the linear arms of the chromophore. This model indicated that there is some coupling and mixing of the lowest excited states e of the linear arms, leading to splitting of the 1PA spectrum of the cruciform. There was little coupling or mixing of the higher excited states e′ accessed in 2PA, leading to a two-band 2PA spectrum for the chromophore, in contrast to cruciform compounds in the literature with identical conjugated arms, which have one visible 2PA band. For cruciforms with D groups on the styryl arm and A character on the terminal phenyls of the phenylethynyl arms (D/A cruciforms), the ππ* exciton model was complemented with a charge-transfer (CT) exciton model describing interactions of charge-transfer pathways between the D and A groups. This model explained the broadness of the 1PA band of D/A cruciforms as well as the two 2PA bands observed for these chromophores. The fluorescence and 2PA spectral responses to binding of Zn²⁺ ions to the D or A groups of some cruciform compounds were also assessed, to provide insight into the design of new analyte-sensing cruciforms for 2PLSM that take advantage of enhancement or reduction of D/A character upon analyte binding. It was found that canceling charge donation from the D groups in differing D/A cruciforms resulted in fluorescence and 2PA spectra nearly indistinguishable from each other, suggesting that turn-off of D groups is not an optimal modality of 2PLSM analyte sensing in cruciforms. Binding Zn²⁺ to A groups was shown to result in an increase in the D/A character of the cruciform, with fluorescence peak energies that changed depending on the location of the A group. It is suggested that the use of non-binding donors and analyte-binding A groups in differing patterns on the arms could be a valuable design motif to achieve 2PLSM sensor compounds based on this cruciform structure. The 2PA spectra of a set of dipolar Zn²⁺ sensing dyes designed for ratiometric imaging in 2PLSM were also studied. These dyes had moderate 2PA strength, with redshifts of fluorescence 2PA spectra on Zn²⁺ binding. The isosbestic point of 2PA of most chromophores was within the range of 2PLSM excitation sources commonly used, rendering these dyes good candidates for use in ratiometric sensing in 2PLSM.
136

Resonance raman investigation of metal to ligand charge transfer transitions in selected inorganic complexes

Cheng, Yung-fong, Yvonne. January 2001 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2001. / Includes bibliographical references (leaves 80-85).
137

Solvent effects upon the charge-transfer reaction of the ADMA molecule in the excited state /

Khajehpour, Mazdak, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
138

Solvent effects upon the charge-transfer reaction of the ADMA molecule in the excited state

Khajehpour, Mazdak, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
139

Studies of charge translocation by Bufo marinus Na⁺/K⁺ ATPase in its Na⁺/Na⁺ exchange mode

Ding, Yanli. January 2009 (has links)
Thesis (Ph.D.)--Ohio University, November, 2009. / Release of full electronic text on OhioLINK has been delayed until December 1, 2014. Title from PDF t.p. Includes bibliographical references.
140

Electron transfer in sensitized TiO₂ systems studied by time resolved surface second hermonic generation

Williams, Kenrick John 11 July 2012 (has links)
Obtaining abundant, clean, sustainable energy has become an increasingly large need globally. To date, solar cells have had a limited impact in meeting energy demands. This is primarily due to their relatively high cost and low power conversion efficiencies. Sensitized solar cells, or Grätzel cells, have the potential for being made with low cost materials, and achieving power conversion efficiency high enough to economically compete with fossil fuels. Understanding the dynamics of charge carriers as they separate at the interface of the light absorbing donor and their semiconducting acceptor becomes an important first step in the realization of an inexpensive and efficient sensitized solar cell. Presented is the theory of treating electrons at donor-acceptor interfaces, and why time-resolved surface second harmonic generation (TR-SHG) is used to probe the dynamics of charge carriers at these interfaces. A series of experiments are described where various preparations of thin films of sensitizers on single crystal titanium dioxide, a common acceptor in Grätzel cells, are prepared and studied. TR-SHG studies of thin films of colloidal PbSe and CdSe QDs showed remarkably different electron cooling and transfer dynamics. The electron cooling in PbSe is thermally activated in PbSe QDs. By cooling samples, electron transfer from higher excited “hot” states was observed. Contrary, for CdSe QDs electron transfer rates were dependent on the energy of the excited state. When higher states were excited, charge transfer rates decreased, indicating that only low energy, electrically “cold”, states participate in charge transfer. When carbon based grapheme QDs are used, the electron dynamics mimic PbSe QDs. In this system, increasing the pump energy leads to slower recombination rates, indicating that electrons have to drift further back to the interface. / text

Page generated in 0.0203 seconds