• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

KINETIC STUDY OF CHEMICAL LOOPING COMBUSTION USING IRON AS AN OXYGEN CARRIER

Amir, Naji 15 November 2011 (has links)
Over the past few decades, combustion of fossil fuels has released greenhouse gases such as CO2 and NOx into the atmosphere. It has been realized that a mean temperature increase of the Earth, also known as global warming, has resulted from the increase of CO2 concentration in the air. Hence, there is a growing tendency to establish novel methods of burning fossil fuels in order to mitigate CO2 concentration. Chemical Looping Combustion (CLC) is a method of burning fuel with inherent separation of CO2 while curbing the formation of NOx, typically by circulating an oxygen carrier between an air (oxidation) reactor and a fuel (reduction) reactor. An oxygen carrier, mainly a metal oxide, circulates between the reactors providing the oxygen for conversion of fuel to CO2 and H2O. Thus, having a pure CO2 stream, CO2 sequestration becomes economically feasible. Fe2O3, due to its availability and properties, could be an apposite oxygen carrier for CLC. Reaction kinetics of reduction of Hematite with methane, in the absence of gaseous oxidant, was studied. Temperature Program Reduction (TPR) experiments were carried out in a fixed bed tubular reactor. Reduction gas was composed of 15% methane and 85% argon. Thermogravimetric Analysis (TGA) was carried out on TPR products using air as the oxidant. Iron oxide samples were analyzed through X-ray diffraction (XRD) analysis and scanning electron microscopy. Two-stage reduction of iron oxide was observed: Fe2O3 reduced to Fe3O4 and then reduced to FeO. The activation energy of each stage was calculated from Kissinger’s method. For the first and second stage of reduction the activation energies were 10.58±0.86 and 25.77±0.83 kJ/mol, respectively. In addition, different kinetic models were assumed and compared to the actual data. A random nucleation mechanism can be assigned to the first stage and a two-dimensional diffusion mechanism can be assigned to the second stage of the reduction.
2

The investigation of aspects of chemical looping combustion in fluidised beds

Mao, Ruinan January 2018 (has links)
Chemical looping combustion (CLC) is a promising fossil fuel combustion technology, which is able to separate CO2 from the flue gases without a large consumption of energy. In this thesis, the study was extended to look at the use of chemical looping materials within traditional fluidised bed combustion and investigation of the interaction between the fuel, the supplied air and the chemical looping agent. Three topics of chemical looping combustion are discussed, including 1) the Sherwood number in the fluidised bed; 2) properties of different oxygen carriers, Fe2O3 and CuO (with supporting materials), were tested in the fluidised bed reactor; 3) the simulation of a steady state and a dynamic model of a coal-fired CLC power plant using Fe2O3 as oxygen carriers. The Sherwood number, which represents the mass transfer rate, is important in the calculation of CLC process. With Sherwood number, the mass transfer rate kg around the acting particle can be calculated using correlation Sh=kg∙d/D, where d is the diameter of acting particle, and D is the diffusivity around the acting particle. Hayhurst and Parmar (Hayhurst and Parmar 2002) calculated the Sherwood number in the fluidised bed by using the CO/CO2 ratio, which was measured by the temperature difference between the carbon particle and the bulk phase (Hayhurst and Parmar 1998). However, the temperature of the particle could be overestimated, so the CO/CO2 ratio could be underestimated. In this thesis, a universal exhaust gas oxygen (UEGO) sensor was employed, which could measure the actual carbon consumption rate in the fluidised bed by oxidizing CO in the sample gas into CO2 and. Fe particles of the same size of the char particle is used to measure the O2 consumption rate, and thus eliminate uncertainty in the Sherwood number. The CO/CO2 ratio was calculated by using the carbon consumption rate and the O2 consumption rate. In contrast to Hayhurst and Parmar (Hayhurst and Parmar 2002) who assumed CO2 was the main product, for this char the actual ratio of CO/CO2 was almost zero. The measurement here is in agreement with Arthur. This more accurate determination of CO/CO2 allows a better estimate of the mass transfer coefficient and leads to a correction of the Hayhurst and Parmar’s (Hayhurst and Parmar 2002) correlation by a factor of 1⁄2. Interestingly, very small fluidised beds have mass transfer coefficients which are about twice that expected in a large bed (owing to the very different flow and indeterminate flow pattern). This means the correlation of Hayhurst and Parmar (Hayhurst and Parmar 2002), by fortuitous coincidence works wells for beds with diameters < 30 mm., without the correction factor, should be ignored. In the fluidised bed in a typical CLC process, different fluidising material could have different influence on the reactions. Thus, it is worth discussing different kinds of fluidising materials. The char combustion in the fluidised bed was simulated by using inert (sand) and active (Fe2O3 or CuO) fluidising materials, and air as fluidising gas. The results indicated that 1) CO combustion in the boundary layer leads to smaller carbon consumption rate and larger oxygen consumption rate; 2) Using Fe2O3 particles as fluidising materials slows down the carbon consumption rate, since the diffusivity of CO2 is smaller than CO; 3) CuO particles slow down the carbon consumption rate at large Sherwood number (Sh=2 or 2.5). The influence of using CuO as fluidising material is further discussed experimentally by using low O2 fluidising gas. The results indicated that since the amount of CuO used in the experiment is small, when the O2 concentration in the bulk phase is lower than the equilibrium concentration, the O2 concentration in the bulk phase gradually decreases, and the O2 concentration in the bulk phase has large influence on the char particle combustion. A steady state model of a coal-fired CLC power plant was simulated. The aim of the model was to test the suitable operating conditions of the power plant, such as recycle rate of oxygen carriers, for the power plant design. In the steady state model, the power plant consists of a combustor and a steam cycle. Hambach lignite coal, Polish bituminous coal and natural gas were tested as fuels. The results indicated that: (1) The effect of the fuel is largely due to the amount of oxygen required per GJ released; (2) Preheating is important, but seems to have a minor effect since the most of the heat is released at temperatures well above the pinch point; (3) since the temperatures of heat source in this research is well above the pinch point, all heat are usable for the steam cycle. In this case, the steam cycle and the chemical looping plant could be optimised separately; (4) As long as the preheat temperature of the air flow into the air reactor is higher than the temperature of turbines, in most of cases the power output is unaffected by the choice of variables, leaving the designer free to choose the most convenient. With the conclusions above, a dynamic model of a coal-fired CLC power plant using Fe2O3 as oxygen carrier is then simulated. The aims of this simulation include: 1) explaining the kinetics of Fe2O3 oxygen carriers at high temperature (1223K) in a fluidised bed reactor using Brown’s data (Brown 2010); 2) a 1GWth dynamic power plant was simulated to test different cases including changing power supply and power storage. In the dynamic model, a chemical looping power plant using Hambach lignite char is tested, and the parameters of the system are adjusted so as to simulate the operations of a real chemical looping power plant. The two-phase model is employed for the fluidised bed reactors. Experimental data from Brown (Brown 2010) was simulated using this model first to test its validity. Then the model is scaled up to simulate a 1GWth dynamic power plant. The ideal operation conditions are found, and a char stripper is found helpful for carbon capture.
3

Pressurized Chemical Looping Combustion of Natural Gas with Ilmenite for SAGD Application: An Oxidation Kinetic Study and Preliminary Air Reactor Model

Rana, Shazadi 14 May 2018 (has links)
To prevent the global surface temperature from increasing past the 2 oC target, it is necessary to address CO2 emissions from small point sources. Within Canada’s heavy oil industry, SAGD facilities use natural gas combustion to produce the large amounts of steam required for the process, which produces approximately 0.5-2 Mtonnes of CO2 per annum. A suitable technology for CO2 mitigation from a SAGD facility is Pressurized Chemical Looping Combustion. PCLC is an oxy-combustion, carbon capture technology with a relatively low predicted energy penalty of 3-4%. The process requires a dual, interconnected fluidized bed reactor system with circulating solids. Natural gas is converted in the fuel reactor via a solid metal oxide, which is then circulated to the air reactor for reoxidation with air. As the cost of air compression is significant, the economical feasibility of the process is reliant on air reactor performance. The objective of this study is to investigate the oxidation reaction and derive a kinetic model for reactor design and performance assessment purposes. Ilmenite ore was chosen as the metal oxide, as it is low cost and has desirable oxygen transport properties for PCLC. Pressurized TGA tests were conducted to study the effects of oxygen concentration, temperature and pressure on the rate of the oxidation reaction. The total pressure was varied from 1-16 bara at 900 oC with air. The oxygen concentration was varied from 2.5-21 vol%, and the temperature from 800-1000 oC at 8 bar. Temperatures below 850 oC resulted in segregation of the Fe and Ti phase in the ilmenite ore, leading to a reduction in the overall oxygen carrying capacity. Crack formation was observed at higher oxygen partial pressures, resulting in increased surface area for reaction and a fast reaction rate. At lower oxygen partial pressures, a solid-state diffusion controlled regime was observed due to the absence of fissures. A dual mechanistic oxidation kinetic model was derived at 8 bar, with 2nd order random nucleation dominating at lower conversions, and Jander’s solid state diffusion model dominating at higher conversions. The transition from the nucleation and growth to the diffusion-controlled portion occurred at higher conversions with higher oxygen partial pressure. The activation energy was 16.6 kJ/mol and 48.7 kJ/mol while the order of reaction with respect to oxygen was 0.3 and 1.3 for respectively the nucleation and growth, and diffusion-controlled regimes. A preliminary air reactor model is constructed as a turbulent bed. The turbulent bed is modelled as an axial dispersion reactor for a basic performance assessment.
4

Development of subgrid models for a periodic circulating fluidized bed of binary mixture of particles

Chevrier, Solène 11 July 2017 (has links) (PDF)
Detailed sensitivity numerical studies have shown that the mesh cell-size may have a drastic effect on the modelling of circulating fluidized bed with small particles. Typically, the cell-size must be of the order of few particle diameters to predict accurately the dynamical behaviour of a fluidized bed. Hence, the Euler-Euler numerical simulations of industrial processes are generally performed with grids too coarse to allow the prediction of the local segregation effects. Appropriate modelling, which takes into account the influence of unresolved structures, have been already proposed for monodisperse simulations. In this work, the influence of unresolved structures on a binary mixture of particles is investigated and models are proposed to account for those effect on bidisperse simulations of bidisperse gas-solid fluidized bed. To achieve this goal, Euler-Euler reference simulations are performed with grid refinement up to reach a mesh independent solution. Such kind of numerical simulation is very expensive and is restricted to very simple configurations. In this work, the configuration consists of a 3D periodical circulating fluidized bed, that could represent the established zone of an industrial circulating fluidized bed. In parallel, a filtered approach is developed where the unknown terms, called sub-grid contributions, appear. They correspond to the difference between filtered terms, which are calculated with the reference results then filtered, and resolved contributions, calculated with the filtered fields. Then spatial filters can be applied to reference simulation results to measure each sub-grid contribution appearing in the theoretical filtered approach. A budget analysis is carried out to understand and model the sub-grid term. The analysis of the filtered momentum equation shows that the resolved fluid-particle drag and inter-particle collision are overestimating the momentum transfer effects. The analysis of the budget of the filtered random kinetic energy shows that the resolved production by the mean shear and by the mean particle relative motion are underestimating the filtered ones. Functional models are proposed for the subgrid contributions of the drag and the inter-particle collision.
5

Combined Chemical Looping Combustion and Calcium Looping for Enhanced Hydrogen Production from Biomass Gasification

Abdul Rahman, Ryad January 2014 (has links)
Production of hydrogen from biomass steam gasification can be enhanced by using calcium oxide sorbents for CO2 capture in the gasifier. Calcium looping suffers from two main drawbacks: the need for high-purity oxygen in order to regenerate the sorbent under oxy-fuel combustion conditions and the loss of sorbent reactivity over several cycles due to sintering of pores upon calcination at high temperatures. One method of addressing the issue of oxygen supply for calcination in calcium looping is to combine the calcium looping and chemical looping processes, where the heat produced by the reduction of an oxygen-carrier by a fuel such as natural gas or gasification syngas, drives the calcination reaction. The technologies can be integrated by combining an oxygen carrier such as CuO with limestone within a composite pellet, or by cycling CuO and limestone within distinct particles. The goal of this project is thus to investigate the different sequences of solids circulation and the cyclic performance of composite limestone-CuO sorbents under varied operating conditions for this novel process configuration. Using a thermogravimetric analyzer (TGA), it was found that using composite CaO/CuO/alumina-containing cement pellets for gasification purposes required oxidation of Cu to be preceded by carbonation (Sequence 2) as opposed to the post-combustion case where the pellets are oxidized prior to carbonation (Sequence 1). Composite pellets were tested using Sequence 2 using varying carbonation conditions over multiple cycles. While the pellets exhibited relatively high carbonation conversion, the oxidation conversion underwent a decrease for all tested conditions, with the reduction in oxygen uptake particularly drastic when the pellets were pre-carbonated in the presence of steam. It appears that the production of a layer of CaCO3 fills up the pellets pores, obstructing the passage of O2 molecules to the more remote Cu sites. Limestone-based pellets and Cu-based pellets were subsequently tested in separate CaL and CLC loops respectively to assess their performance in a dual-loop process (Sequence 3). A maximum Cu content of 50% could be accommodated in a pellet with calcium aluminate cement as support with no loss in oxidation conversion and no observable agglomeration.
6

Development of Chemical Looping Combustion Technology for Energy Application - Process Modeling, Experimental Aspect, and Exergy Analysis

Zhang, Yitao January 2020 (has links)
No description available.
7

Development of Chemical Looping Combustion Technology for Energy Production and Sulfur Capture - Experimental Aspect, Process Modeling, Hydrodynamic Studies

Pottimurthy, Yaswanth January 2021 (has links)
No description available.
8

The Feasibility Study of Perovskite Oxygen Carriers for Chemical Looping Combustion

Gholami, Mahsa January 2016 (has links)
No description available.
9

Chemical looping combustion : a multi-scale analysis

Schnellmann, Matthias Anthony January 2018 (has links)
Chemical looping combustion (CLC) is a technique for separating pure carbon dioxide from the combustion of fuels. The oxygen to burn the fuel comes from the lattice oxygen contained in solid particles of an inorganic oxide (the 'oxygen carrier'), instead of from oxygen in the air. Thus only CO2 and water leave the combustor, or fuel reactor. Next, the water is condensed, leaving pure CO2. The oxygen carrier is regenerated by oxidising it in air in a second reactor, called the air reactor. Accordingly, a stream of pure carbon dioxide can be produced, uncontaminated with gases such as nitrogen, normally present when the fuel burns in air. This intrinsic separation with CLC enables CO2 to be separated more efficiently than with other techniques, such as post-combustion scrubbing of carbon dioxide from stack gases with amine-based solvents. The design of a CLC system and its performance within an electricity system represents a multi-scale problem, ranging from the behaviour of single particles of oxygen carrier within a reactor to how a CLC-based power plant would perform in an electricity grid. To date, these scales have been studied in isolation, with little regard for the vital interactions and dependences amongst them. This Dissertation addresses this problem by considering CLC holistically for the first time, using a multi-scale approach. A stochastic model was developed, combining the particle-and reactor-scales of CLC. It included an appropriate particle model and can be coupled to a detailed reactor model. The combination represented a significant change from existing approaches, uniquely accounting for all the important factors affecting the assemblage of particles performing in the CLC reactors. It was used to determine the regimes of operation in which CLC is sensitive to factors such as the manner in which the particles are reacting, the residence time distribution of particles in the two reactors, the particle size distribution and the reaction history of particles. To demonstrate that the approach could simulate specific configurations of CLC, as well as a general system, the model was compared with results from experiments in which CLC with methane was conducted in a laboratory-scale circulating fluidised bed. The long-term performance of oxygen carrier materials is important, because, in an industrial process, they would be expected to function satisfactorily for many thousands of hours of operation. Long-term experiments were conducted to evaluate the resistance of different oxygen carrier materials to physical and chemical attrition. The evolution of their chemical kinetics was also determined. The results were used to evaluate the impact of different oxygen carrier materials in a fuel reactor at industrial-scale. Finally, a theoretical approach was developed to simulate how a fleet of CLC-based power plants would perform within the UK's national grid. By understanding how different parameters such as capital cost, operating cost and measures of efficiency, compared with other methods of generation offering carbon reduction, desirable design modifications and needs for improvement for CLC were identified by utilising the theoretical and experimental work conducted at the particle- and reactor-scales.
10

Preparation of Copper-Based Oxygen Carrier Supported on Titanium Dioxide

Cui, Yaowen 01 August 2012 (has links)
Chemical-looping combustion is an indirect oxygen combustion strategy, considered to be the most cost-effective power generation technology with the CO2 inherently concentrated. In this process, a solid oxygen carrier is used to transfer oxygen from the air reactor to the fuel reactor, which completely isolates nitrogen in air to meet with fuels. The oxygen carriers in the combustion process are subjected to the severe environments, such as high temperatures, multi-cycle operations, and thermodynamic limitations. Thus, the preparation of an oxygen carrier with high durability and better kinetics under harsh environment could be an essential part of Chemical-looping combustion development. In this study, modified wet impregnation and co-precipitation methods have been developed. The active ingredient is copper(II) oxide, and the supporting material is either directly from titanium(IV) oxide (anatase 99%) or that prepared from other titanium resources such as titanium tetrachloride and tetrabutyl titanate. Preliminary results showed the prepared oxygen carriers functioned properly in the multi-cycles of oxidization and reduction in TGA at different temperatures. Characterization of used oxygen carriers was carried out using techniques of XRD, and SEM-EDS, which provide information for the difference between oxygen carriers from different preparation methods. Through the comparison, the oxygen carrier from the sol-gel preparation method has better dispersion and oxidation activity than those from mechanical mixing, wet-impregnation, and cox precipitation method. Moreover, towards the oxygen carrier from sol-gel method, nucleation model and diffusion models were determined at different reaction periods.

Page generated in 0.03 seconds