• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 7
  • 1
  • Tagged with
  • 61
  • 61
  • 61
  • 61
  • 8
  • 6
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Electrochemistry of extended aromatic systems and nanostructures

Bruno, Carlo <1974> 15 April 2008 (has links)
No description available.
22

Fotofisica e fotochimica di sistemi organici coniugati di interesse biologico e tecnologico

Conti, Irene <1976> 15 April 2008 (has links)
No description available.
23

Structure determination of proteins and peptides in solution: simulation, chirality and NMR studies

Pietropaolo, Adriana <1981> 16 April 2008 (has links)
The study of protein fold is a central problem in life science, leading in the last years to several attempts for improving our knowledge of the protein structures. In this thesis this challenging problem is tackled by means of molecular dynamics, chirality and NMR studies. In the last decades, many algorithms were designed for the protein secondary structure assignment, which reveals the local protein shape adopted by segments of amino acids. In this regard, the use of local chirality for the protein secondary structure assignment was demonstreted, trying to correlate as well the propensity of a given amino acid for a particular secondary structure. The protein fold can be studied also by Nuclear Magnetic Resonance (NMR) investigations, finding the average structure adopted from a protein. In this context, the effect of Residual Dipolar Couplings (RDCs) in the structure refinement was shown, revealing a strong improvement of structure resolution. A wide extent of this thesis is devoted to the study of avian prion protein. Prion protein is the main responsible of a vast class of neurodegenerative diseases, known as Bovine Spongiform Encephalopathy (BSE), present in mammals, but not in avian species and it is caused from the conversion of cellular prion protein to the pathogenic misfolded isoform, accumulating in the brain in form of amiloyd plaques. In particular, the N-terminal region, namely the initial part of the protein, is quite different between mammal and avian species but both of them contain multimeric sequences called Repeats, octameric in mammals and hexameric in avians. However, such repeat regions show differences in the contained amino acids, in particular only avian hexarepeats contain tyrosine residues. The chirality analysis of avian prion protein configurations obtained from molecular dynamics reveals a high stiffness of the avian protein, which tends to preserve its regular secondary structure. This is due to the presence of prolines, histidines and especially tyrosines, which form a hydrogen bond network in the hexarepeat region, only possible in the avian protein, and thus probably hampering the aggregation.
24

Spettroscopia rotazionale di specie di interesse astrofisico

Tinti, Francesca <1977> 16 April 2008 (has links)
No description available.
25

Microfluidic device and interfacial transport: application to biomolecules and nanostructures

Greco, Pierpaolo <1977> 27 April 2009 (has links)
The aim of my dissertation is to provide new knowledge and applications of microfluidics in a variety of problems, from materials science, devices, and biomedicine, where the control on the fluid dynamics and the local concentration of the solutions containing the relevant molecules (either materials, precursors, or biomolecules) is crucial. The control of interfacial phenomena occurring in solutions at dierent length scales is compelling in nanotechnology for devising new sensors, molecular electronics devices, memories. Microfluidic devices were fabricated and integrated with organic electronics devices. The transduction involves the species in the solution which infills the transistor channel and confined by the microfluidic device. This device measures what happens on the surface, at few nanometers from the semiconductor channel. Soft-lithography was adopted to fabricate platinum electrodes, starting from platinum carbonyl precursor. I proposed a simple method to assemble these nanostructures in periodic arrays of microstripes, and form conductive electrodes with characteristic dimension of 600 nm. The conductivity of these sub-microwires is compared with the values reported in literature and bulk platinum. The process is suitable for fabricating thin conductive patterns for electronic devices or electrochemical cells, where the periodicity of the conductive pattern is comparable with the diusion length of the molecules in solution. The ordering induced among artificial nanostructures is of particular interest in science. I show that large building blocks, like carbon nanotubes or core-shell nanoparticles, can be ordered and self-organised on a surface in patterns due to capillary forces. The eective probability of inducing order with microfluidic flow is modeled with finite element calculation on the real geometry of the microcapillaries, in soft-lithographic process. The oligomerization of A40 peptide in microconfined environment represents a new investigation of the extensively studied peptide aggregation. The added value of the approach I devised is the precise control on the local concentration of peptides together with the possibility to mimick cellular crowding. Four populations of oligomers where distinguished, with diameters ranging from 15 to 200 nm. These aggregates could not be addresses separately in fluorescence. The statistical analysis on the atomic force microscopy images together with a model of growth reveal new insights on the kinetics of amyloidogenesis as well as allows me to identify the minimum stable nucleus size. This is an important result owing to its implications in the understanding and early diagnosis and therapy of the Alzheimer’s disease
26

Computer simulation of ordering and dynamics in liquid crystals in the bulk and close to the surface

Pizzirusso, Antonio <1980> 27 April 2009 (has links)
The aim of this PhD thesis is to investigate the orientational and dynamical properties of liquid crystalline systems, at molecular level and using atomistic computer simulations, to reach a better understanding of material behavior from a microscopic point view. In perspective this should allow to clarify the relation between the micro and macroscopic properties with the objective of predicting or confirming experimental results on these systems. In this context, we developed four different lines of work in the thesis. The first one concerns the orientational order and alignment mechanism of rigid solutes of small dimensions dissolved in a nematic phase formed by the 4-pentyl,4 cyanobiphenyl (5CB) nematic liquid crystal. The orientational distribution of solutes have been obtained with Molecular Dynamics Simulation (MD) and have been compared with experimental data reported in literature. we have also verified the agreement between order parameters and dipolar coupling values measured in NMR experiments. The MD determined effective orientational potentials have been compared with the predictions of Maier­Saupe and Surface tensor models. The second line concerns the development of a correct parametrization able to reproduce the phase transition properties of a prototype of the oligothiophene semiconductor family: sexithiophene (T6). T6 forms two crystalline polymorphs largely studied, and possesses liquid crystalline phases still not well characterized, From simulations we detected a phase transition from crystal to liquid crystal at about 580 K, in agreement with available experiments, and in particular we found two LC phases, smectic and nematic. The crystal­smectic transition is associated to a relevant density variation and to strong conformational changes of T6, namely the molecules in the liquid crystal phase easily assume a bent shape, deviating from the planar structure typical of the crystal. The third line explores a new approach for calculating the viscosity in a nematic through a virtual exper- iment resembling the classical falling sphere experiment. The falling sphere is replaced by an hydrogenated silicon nanoparticle of spherical shape suspended in 5CB, and gravity effects are replaced by a constant force applied to the nanoparticle in a selected direction. Once the nanoparticle reaches a constant velocity, the viscosity of the medium can be evaluated using Stokes' law. With this method we successfully reproduced experimental viscosities and viscosity anisotropy for the solvent 5CB. The last line deals with the study of order induction on nematic molecules by an hydrogenated silicon surface. Gaining predicting power for the anchoring behavior of liquid crystals at surfaces will be a very desirable capability, as many properties related to devices depend on molecular organization close to surfaces. Here we studied, by means of atomistic MD simulations, the flat interface between an hydrogenated (001) silicon surface in contact with a sample of 5CB molecules. We found a planar anchoring of the first layers of 5CB where surface interactions are dominating with respect to the mesogen intermolecular interactions. We also analyzed the interface 5CB­vacuum, finding a homeotropic orientation of the nematic at this interface.
27

Theoretical insight into the properties of light induced events of photochromic systems and rhodopsin proteins

Tomasello, Gaia <1981> 27 April 2009 (has links)
No description available.
28

Sistemi liquido cristallini complessi: simulazioni al calcolatore e studi ESR

Miglioli, Isabella <1982> 04 June 2010 (has links)
The aim of this PhD thesis was to study at a microscopic level different liquid crystal (LC) systems, in order to determine their physical properties, resorting to two distinct methodologies, one involving computer simulations, and the other spectroscopic techniques, in particular electron spin resonance (ESR) spectroscopy. By means of the computer simulation approach we tried to demonstrate this tool effectiveness for calculating anisotropic static properties of a LC material, as well as for predicting its behaviour and features. This required the development and adoption of suitable molecular models based on a convenient intermolecular potentials reflecting the essential molecular features of the investigated system. In particular, concerning the simulation approach, we have set up models for discotic liquid crystal dimers and we have studied, by means of Monte Carlo simulations, their phase behaviour and self­-assembling properties, with respect to the simple monomer case. Each discotic dimer is described by two oblate Gay­Berne ellipsoids connected by a flexible spacer, modelled by a harmonic "spring" of three different lengths. In particular we investigated the effects of dimerization on the transition temperatures, as well as on the characteristics of molecular aggregation displayed and the relative orientational order. Moving to the experimental results, among the many experimental techniques that are typically employed to evaluate LC system distinctive features, ESR has proved to be a powerful tool in microscopic scale investigation of the properties, structure, order and dynamics of these materials. We have taken advantage of the high sensitivity of the ESR spin probe technique to investigate increasingly complex LC systems ranging from devices constituted by a polymer matrix in which LC molecules are confined in shape of nano- droplets, as well as biaxial liquid crystalline elastomers, and dimers whose monomeric units or lateral groups are constituted by rod-like mesogens (11BCB). Reflection-mode holographic-polymer dispersed liquid crystals (H-PDLCs) are devices in which LCs are confined into nanosized (50­-300 nm) droplets, arranged in layers which alternate with polymer layers, forming a diffraction grating. We have determined the configuration of the LC local director and we have derived a model of the nanodroplet organization inside the layers. Resorting also to additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross-section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director configuration is a uniaxial quasi- monodomain aligned along the nanodroplet long axis. The results suggest that the molecular organization is dictated mainly by the confinement, explaining, at least in part, the need for switching voltages significantly higher and the observed faster turn-off times in H-PDLCs compared to standard PDLC devices. Liquid crystal elastomers consist in cross-linked polymers, in which mesogens represent the monomers constituting the main chain or the laterally attached side groups. They bring together three important aspects: orientational order in amorphous soft materials, responsive molecular shape and quenched topological constraints. In biaxial nematic liquid crystalline elastomers (BLCEs), two orthogonal directions, rather than the one of normal uniaxial nematic, can be controlled, greatly enhancing their potential value for applications as novel actuators. Two versions of a side-chain BLCEs were characterized: side­-on and end­-on. Many tests have been carried out on both types of LCE, the main features detected being the lack of a significant dynamical behaviour, together with a strong permanent alignment along the principal director, and the confirmation of the transition temperatures already determined by DSC measurements. The end­-on sample demonstrates a less hindered rotation of the side group mesogenic units and a greater freedom of alignment to the magnetic field, as already shown by previous NMR studies. Biaxial nematic ESR static spectra were also obtained on the basis of Molecular Dynamics generated biaxial configurations, to be compared to the experimentally determined ones, as a mean to establish a possible relation between biaxiality and the spectral features. This provides a concrete example of the advantages of combining the computer simulation and spectroscopic approaches. Finally, the dimer α,ω-bis(4'-cyanobiphenyl-4-yl)undecane (11BCB), synthesized in the "quest" for the biaxial nematic phase has been analysed. Its importance lies in the dimer significance as building blocks in the development of new materials to be employed in innovative technological applications, such as faster switching displays, resorting to the easier aligning ability of the secondary director in biaxial phases. A preliminary series of tests were performed revealing the population of mesogenic molecules as divided into two groups: one of elongated straightened conformers sharing a common director, and one of bent molecules, which display no order, being equally distributed in the three dimensions. Employing this model, the calculated values show a consistent trend, confirming at the same time the transition temperatures indicated by the DSC measurements, together with rotational diffusion tensor values that follow closely those of the constituting monomer 5CB.
29

Morphological transitions in molecular and polymeric materials: patterning, fabrication, devices

Calò, Annalisa <1976> 03 June 2010 (has links)
This thesis individuates and characterizes irreversible transformations occurring in specific organic and oligomeric/polymeric thin films. These transformations are dewetting in discotic liquid crystals thin films and dewetting and smoothing in oligomeric and polyemeric films. Irreversible transformations are extensively characterized by means of optical and atomic force microscopy. In the case of discotic liquid crystals films the morphological characterization is performed sinchronically with electrical measurements of current during dewetting.
30

In situ real-time investigation of Organic Ultra-Thin-Film transistors: growth, electrical properties and biosensing applications

Quiroga, Santiago David <1977> 04 June 2010 (has links)
Organic electronics has grown enormously during the last decades driven by the encouraging results and the potentiality of these materials for allowing innovative applications, such as flexible-large-area displays, low-cost printable circuits, plastic solar cells and lab-on-a-chip devices. Moreover, their possible field of applications reaches from medicine, biotechnology, process control and environmental monitoring to defense and security requirements. However, a large number of questions regarding the mechanism of device operation remain unanswered. Along the most significant is the charge carrier transport in organic semiconductors, which is not yet well understood. Other example is the correlation between the morphology and the electrical response. Even if it is recognized that growth mode plays a crucial role into the performance of devices, it has not been exhaustively investigated. The main goal of this thesis was the finding of a correlation between growth modes, electrical properties and morphology in organic thin-film transistors (OTFTs). In order to study the thickness dependence of electrical performance in organic ultra-thin-film transistors, we have designed and developed a home-built experimental setup for performing real-time electrical monitoring and post-growth in situ electrical characterization techniques. We have grown pentacene TFTs under high vacuum conditions, varying systematically the deposition rate at a fixed room temperature. The drain source current IDS and the gate source current IGS were monitored in real-time; while a complete post-growth in situ electrical characterization was carried out. At the end, an ex situ morphological investigation was performed by using the atomic force microscope (AFM). In this work, we present the correlation for pentacene TFTs between growth conditions, Debye length and morphology (through the correlation length parameter). We have demonstrated that there is a layered charge carriers distribution, which is strongly dependent of the growth mode (i.e. rate deposition for a fixed temperature), leading to a variation of the conduction channel from 2 to 7 monolayers (MLs). We conciliate earlier reported results that were apparently contradictory. Our results made evident the necessity of reconsidering the concept of Debye length in a layered low-dimensional device. Additionally, we introduce by the first time a breakthrough technique. This technique makes evident the percolation of the first MLs on pentacene TFTs by monitoring the IGS in real-time, correlating morphological phenomena with the device electrical response. The present thesis is organized in the following five chapters. Chapter 1 makes an introduction to the organic electronics, illustrating the operation principle of TFTs. Chapter 2 presents the organic growth from theoretical and experimental points of view. The second part of this chapter presents the electrical characterization of OTFTs and the typical performance of pentacene devices is shown. In addition, we introduce a correcting technique for the reconstruction of measurements hampered by leakage current. In chapter 3, we describe in details the design and operation of our innovative home-built experimental setup for performing real-time and in situ electrical measurements. Some preliminary results and the breakthrough technique for correlating morphological and electrical changes are presented. Chapter 4 meets the most important results obtained in real-time and in situ conditions, which correlate growth conditions, electrical properties and morphology of pentacene TFTs. In chapter 5 we describe applicative experiments where the electrical performance of pentacene TFTs has been investigated in ambient conditions, in contact to water or aqueous solutions and, finally, in the detection of DNA concentration as label-free sensor, within the biosensing framework. / Negli ultimi decenni l’organica elettronica ha subito un’importante crescita spinta da diversi risultati alquanto incoraggianti e dalle potenziali nuove applicazioni che possono dare luogo agli innumerevoli materiali organici esistenti, tra cui gli schermi flessibili e di grande superficie, i circuiti stampabili a basso costo, le celle solari plastiche e i dispositivi di tipo “lab-on-a-chip”. Inoltre, i campi di applicazione sono così vasti da comprendere medicina, biotecnologia, processi di automazione e monitoraggio dei parametri ambientali, nonché la difesa e la sicurezza. Tuttavia un considerevole numero di domande deve ancora trovare risposta. Tra queste il meccanismo di operazione, che rimane senza essere completamente compreso e la correlazione tra la morfologia e la risposta elettrica dei dispositivi. Nonostante si sia ampiamente riconosciuto l’importante ruolo che il modo di crescita ha sulla prestazione dei dispositivi, non è stata realizzata un’investigazione esaustiva dell’argomento. Il principale obbiettivo di questa tesi è quindi quello di trovare una correlazione tra i modi di crescita e le proprietà elettriche in transistor a film sottile (TFTs) di pentacene. Al fine di studiare la dipendenza della prestazione elettrica dei TFTs di pentacene al variare dello spessore, si è proceduto all’ideazione e alla costruzione di una strumentazione sperimentale ad hoc, che permettesse di realizzare misurazioni elettriche in tempo reale e caratterizzazioni in situ alla fine della deposizione. Abbiamo provveduto alla crescita di dispositivi TFTs di pentacene in condizione di alto vuoto, variando metodologicamente la velocità di deposizione a temperatura ambiente prefissata. Durante la crescita, la corrente di drain IDS e la corrente di gate IGS sono state monitorate in tempo reale e al termine di ogni deposizione si è proceduto alla caratterizzazione elettrica in situ. Alla fine si è investigato sulla morfologia ex situ con l’utilizzo di un microscopio di forza atomica (AFM). Nel presente lavoro si riporta la correlazione valida per TFTs di pentacene tra le condizioni di crescita, la lunghezza di Debye e la morfologia (quantificata attraverso la lunghezza di correlazione). Abbiamo dimostrato che i portatori di carica vengono distribuiti nei layers a seconda del modo di crestita eseguito dal film (che dipende dalla velocità di deposizione per una data temperatura), il quale porta a una variazione del canale attivo dai 2 ai 7 monolayers (MLs). I nostri risultati hanno conciliato altri riportati in precedenza, che sembravano alquanto contradittori e hanno evidenziato la necessità di rielaborare il concetto di lunghezza di Debye in dispositivi a strati a bassa dimensione. Inoltre, per la prima volta, si presenta un’innovativa tecnica che indica l’avvenimento della percolazione attraverso il monitoraggio elettrico della IGS durante la deposizione del film sottile, correlando i fenomeni morfologici con quelli elettrici. Il capitolo 1 di questa tesi ci introduce nel mondo dell’elettronica organica e ci spiega il funzionamento del TFT. Il capitolo 2, ci spiega la crescita dei materiali organici, offrendo prima un fondamento teorico per poi passare alla sperimentazione; dopodiché si esibisce la prestazione elettrica tipica dei dispositivi di pentacene e si presenta la suddetta tecnica correttiva sugli effetti della corrente di fuga. Nel capitolo 3 si presenta la strumentazione costruita ad hoc per il monitoraggio elettrico in tempo reale e in situ; si illustrano inoltre alcuni risultati preliminari, assieme alla suddetta tecnica “breakthrough”. Intanto, nel capitolo 4, si riportano i più rilevanti risultati ottenuti in tempo reale e in situ, che correlano il modo di crescita, le proprietà elettriche e la morfologia dei TFTs di pentacene. Infine, il capitolo 5, si concentra nello studio sulla risposta elettrica dei dispositivi TFTs di pentacene in contatto con l’ambiente, con acqua e altre soluzioni acquose e, principalmente, della sua applicazione nella biosensoristica come sensore di concentrazione di DNA.

Page generated in 0.0722 seconds