• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mutant KRAS promotes CIP2A-mediated suppression of PP2A-B56a to initiate development of pancreatic ductal adenocarcinoma

Samantha Lauren Tinsley (15349120) 02 August 2023 (has links)
<p>Oncogenic mutations in KRAS are present in approximately 95% of patients diagnosed with pancreatic ductal adenocarcinoma (<b>PDAC</b>) and are considered the initiating event during the development of pancreatic intraepithelial neoplasia (<b>PanIN</b>) precursor lesions. While it is well established that KRAS mutations can drive the initiation of pancreatic oncogenesis, the effects of oncogenic KRAS signaling on regulation of phosphatases during this process is not fully appreciated. Protein Phosphatase 2A (<b>PP2A</b>) has been implicated in suppressing KRAS-driven cellular transformation. However, low PP2A activity is observed in PDAC cells compared to non-transformed cells, suggesting that suppression of PP2A activity is an important step in the overall development of PDAC. In the current study, we demonstrate that KRASG12D induces the expression of both Cancerous Inhibitor of PP2A (<b>CIP2A</b>), an endogenous inhibitor of PP2A activity, and the PP2A target, c-MYC. Consistent with these findings, KRASG12D sequestered the specific PP2A subunit responsible for c-MYC degradation, B56a, away from the active PP2A holoenzyme in a CIP2A-dependent manner. During PDAC initiation <i>in vivo</i>, knockout of B56a promoted KRASG12D tumorigenesis by accelerating acinar-to-ductal metaplasia (<b>ADM</b>) and the formation of PanIN lesions. The process of ADM was attenuated <i>ex vivo</i> in response to pharmacological re-activation of PP2A utilizing direct small molecule activators of PP2A (<b>SMAP</b>s). Together, the results of this study suggest that suppression of PP2A-B56a through KRAS signaling can promote Myc-driven initiation of pancreatic tumorigenesis.</p>

Page generated in 0.0176 seconds