• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation and Design of a SiC-Based Bidirectional Isolated DC/DC Converter

Chu, Alex 01 February 2018 (has links)
Galvanic isolation between the grid and energy storage unit is typically required for bidirectional power distribution systems. Due to the recent advancement in wide-bandgap semiconductor devices, it has become feasible to achieve the galvanic isolation using bidirectional isolated DC/DC converters instead of line-frequency transformers. A survey of the latest generation SiC MOSFET is performed. The devices were compared against each other based on their key parameters. It was determined that under the given specifications, the most suitable devices are X3M0016120K 1.2 kV 16 mohm and C3M0010090K 900 V 10 mohm SiC MOSFETs from Wolfspeed. Two of the most commonly utilized bidirectional isolated DC/DC converter topologies, dual active bridge and CLLC resonant converter are introduced. The operating principle of these converter topologies are explained. A comparative analysis between the two converter topologies, focusing on total device loss, has been performed. It was found that the CLLC converter has lower total device loss compared to the dual active bridge converter under the given specifications. Loss analysis for the isolation transformer in the CLLC resonant converter was also performed at different switching frequencies. It was determined that the total converter loss was lowest at a switching frequency of 250 kHz A prototype for the CLLC resonant converter switching at 250 kHz was then designed and built. Bidirectional power delivery for the converter was verified for power levels up to 25 kW. The converter waveforms and efficiency data were captured at different power levels. Under forward mode operation, a peak efficiency of 98.3% at 15 kW was recorded, along with a full load efficiency value of 98.1% at 25 kW. Under reverse mode operation, a peak efficiency of 98.8% was measured at 17.8 kW. The full load efficiency at 25 kW under reverse mode operation is 98.5%. / Master of Science
2

Evaluation of the Current-Fed CLLC DC/DC Converters for Battery and Super-Capacitor Based Energy Storage Systems Used in Electrified Transportation

Bai, Yujie 03 December 2019 (has links)
No description available.
3

Topology and Control Investigation of Soft-Switching DC-DC Converters for DC Transformer (DCX) Applications

Cao, Yuliang 09 January 2024 (has links)
With the development of electric vehicle (EV) charging systems, energy storage systems (ESS), data center power supplies, and solid-state transformer (SST) systems, the fixed-ratio isolated DC-DC converter, namely the DC transformer (DCX), has gained significant popularity. Similar to the passive AC transformer, DCX can bidirectionally convey DC power with very high efficiency. Due to zero-voltage switching (ZVS) and a small root mean square (RMS) current, the open-loop CLLC resonant converter operating at the resonant frequency is a promising candidate for DCX with a constant voltage transfer ratio. In Chapter 2, to solve unsmooth bidirectional power flow and current distortion in the traditional CLLC-DCX with synchronization rectification (SR) modulation, a dual-active-synchronization (DAS) modulation is adopted with identical driving signals on both sides. First, the switching transition of this modulation is thoroughly analyzed considering the large switch's output capacitances. After comparing different transitions, a so-called sync-ZVS transition is more desirable with ZVS, has no deadtime conduction loss, and almost has load-independent voltage gain. An axis and center symmetric (ACS) method is proposed to achieve this switching transition. Based on this method, an overall design procedure of CLLC-DCX with DAS modulation is also proposed. However, designing a high-power and high-frequency transformer for CLLC-DCX presents significant challenges due to the trade-off between thermal management, leakage inductance minimization, and insulation requirements. To overcome this trade-off between power rating and operation frequency, a scalable electronic-embedded transformer (EET) with a low-voltage bridge integrated into the transformer windings is proposed in Chapter 3. The EET addresses the challenge through simple open-loop control and natural current sharing, enabling easy parallel connection and scaling to different power ratings. Based on this concept, a bidirectional, EET-based DC transformer (EET-DCX) is proposed to solve the transformer-level paralleling and resonant point shift issues in traditional LLC-DCX designs. By employing the embedded full bridge, the EET-DCX effectively cancels out the impedance of the leakage inductance, ensuring optimal operation at any frequency. Additionally, the EET-DCX retains the inherent advantages of the LLC-DCX, such as load-independent voltage gain, simple open-loop control, full-load range ZVS, and low circulating current. Leveraging these advantages, the proposed EET-DCX solution has the potential to push the boundaries of transformer performance to the MHz operation frequency range with hundreds of kilowatts of power capability. Moreover, to address the significant RMS current problem of the CLLC-DCX, a trapezoidal current modulation is also proposed in Chapter 3. Compared to the CLLC-DCX with a sinusoidal current, an EET-DCX with a trapezoidal current can reduce the total conduction loss by up to 23%. This total conduction loss includes semiconductor loss on both high-voltage and low-voltage bridges and transformer winding loss. In light of this EET concept, another resonant commutation (RC) EET-DCX is proposed to streamline the circuit. First, it replaces the embedded full bridge with a low-voltage bidirectional AC switch. Second, it introduces a resonant current commutation to realize a quasi-trapezoidal transformer current with a smaller RMS value. Compared to the triangular current produced by the original EET-DCX, the RMS current can be decreased by 15%. By incorporating only one embedded bidirectional AC switch, the high-frequency transformer leakage inductance impedance is fully neutralized. As a result, the rated power of the proposed RC EET-DCX can be readily scaled up through transformer-level parallelism. Furthermore, the RC EET-DCX maintains the benefits of a typical LLC/CLLC-DCX, including load-independent voltage gain, full load range ZVS, and low circulating current. However, either in EET-DCX or RC EET-DCX, the trapezoidal current modulation will increase the voltage stress on the low-voltage full bridge or bidirectional AC switch, especially when the leakage inductance is large and variable, such as in the high-power wireless charging application. To address this trade-off between RMS current and voltage stress, this paper proposes the concept of a hybrid resonant-type EET-DCX with a series resonant capacitor. Following this concept, two specific topologies, hybrid EET-DCX and hybrid RC EET-DCX, are proposed. The main difference between these topologies is that the former adopts a full bridge. In a hybrid RC EET-DCX, a resonant current commutation scheme is developed. Among these topologies, since the passive capacitor can mainly cancel the leakage inductance impedance, the full bridge or AC switch only needs to handle the remaining impedance. Thus, the voltage stress on active components can be dramatically decreased. Additionally, these two proposed topologies can retain all the advantages of previous EET-DCX designs, including natural current sharing, load-independent voltage gain, simple open-loop control, and full-load range ZVS. The comparison between these two topologies is thoroughly studied. Finally, a 12-kW DCX testbench is built to verify all the analysis and performance in Chapter 3. If output voltage regulation is required, DCX can cooperate with other voltage regulators to realize high conversion efficiency and power density. In Chapter 4, two DCX applications are implemented: an 18-kW 98.8% peak efficiency EV battery charger with partial power processing and a 50-kW symmetric 3-level buck-boost converter with common-mode (CM) noise reduction. In the first battery charger, a large portion of the power is handled by an 18 kW CLLC-DCX, and the remaining partial power goes through a 3-phase interleaved buck converter. The proposed switching transition optimization in Chapter 2 is adopted in the 18-kW CLLC-DCX to realize 98.8% peak efficiency. To handle the step-up and step-down cases at the same time, a symmetric 3-level buck-boost converter with coupled inductors is also studied as a post regulator. With symmetric topology and quadrangle current control, the converter can achieve a CM noise reduction and full load range ZVS with a small RMS current. To further optimize the performance and simplify the control, a mid-point bridging with a better CM noise reduction and a split capacitor voltage auto-balance is implemented. A 50-kW prototype is built to verify the above analysis. To summarize, Chapter 2 first proposes a switching transition optimization for CLLC-DCX. Later, to address the intrinsic trade-off between transformer rating power and frequency, an EET concept and its corresponding soft-switching DCX family are found in Chapter 3. Finally, to handle voltage regulation, two examples for practical applications are studied in Chapter 4 —one is an 18-kW partial power converter, and the other is a 50-kW 3-L buck-boost converter. Finally, Chapter 5 will draw conclusions and illustrate future work. / Doctor of Philosophy / With the development of electric vehicle (EV) charging systems, energy storage systems (ESS), data center power supply, and solid-state transformer (SST) systems, the fixed-ratio isolated dc-dc converter, namely dc transformer (DCX), has gained significant popularity. However, designing a high-performance DCX still has many challenges, such as large dead time loss, poor current sharing, and sensitivity to parameter tolerance. Firstly, the state-of-the-art resonant CLLC-DCX is optimized in Chapter 2. With an optimal switching frequency and dead time, both the primary and secondary sides of zero voltage switching (ZVS) can begin and finish simultaneously, which means dead time loss caused by current through the body diode can be eliminated. Therefore, the efficiency of CLLC-DCX can be improved. However, designing a high-power and high-frequency CLLC-DCX transformer still presents significant challenges due to the trade-off between thermal management, leakage inductance minimization, and insulation requirements. To overcome this trade-off, in Chapter 3, a scalable electronic-embedded transformer (EET) concept with a low-voltage bridge integrated into the transformer windings is proposed. The EET addresses the challenge through its simple open-loop control and natural current sharing, enabling easy parallel connection and scaling to different power ratings. In light of this EET concept, a new family of soft-switching DCXs is proposed for different applications, such as high-power wireless charging systems. All these EET-based DCXs retain the merits of typical CLLC-DCX, such as small circulating current ringing, small turn-off current, full load range ZVS, and load-independent gain. After realizing a desirable design for DCX, Chapter 4 presents two DCX applications with voltage regulation. Firstly, an 18 kW 98.8% peak efficiency battery charger is designed with partial power processing. Most of the power will go through an optimized DCX, and the remaining small portion of power will go through a 3-phase interleaved buck converter. On the other hand, DCX can also be adopted as a front-end or rear-end converter in a typical two-state DC-DC converter. As for another stage, a non-isolated DC-DC converter with a large output range can be used to handle voltage regulation. Following this structure, a 50-kW symmetric 3-L buck-boost converter with coupled inductors and reduced common emission is proposed. To summarize, the state-of-the-art CLLC-DCX is optimized in Chapter 2. Afterward, a new concept of EET-DCX and its corresponding DCX family is proposed in Chapter 3. After obtaining an optimized DCX, two practical applications with DCX are implemented in Chapter 4. Finally, Chapter 5 will draw conclusions and illustrate future work.

Page generated in 0.0477 seconds