1 |
Automated Prediction of CMEs Using Machine Learning of CME – Flare AssociationsQahwaji, Rami S.R., Colak, Tufan, Al-Omari, M., Ipson, Stanley S. 06 December 2007 (has links)
Yes / In this work, machine learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CMEs catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flares and CMEs data, which are later arranged in numerical training vectors and fed to machine learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Different properties are extracted from all the associated (A) and not-associated (NA) flares representing the intensity, flare duration, duration of decline and duration of growth. Cascade Correlation Neural Networks (CCNN) are used in our work. The flare properties are converted to numerical formats that are suitable for CCNN. The CCNN will predict if a certain flare is likely to initiate a CME after input of its properties. Intensive experiments using the Jack-knife techniques are carried out and it is concluded that our system provides an accurate prediction rate of 65.3%. The prediction performance is analysed and recommendation for enhancing the performance are provided.
|
2 |
Automated Prediction of CMEs Using Machine Learning of CME¿¿¿Flare AssociationsQahwaji, Rami S. R., Colak, Tufan, Al-Omari, M., Ipson, Stanley S. 02 June 2008 (has links)
Machine-learning algorithms are applied to explore the relation between significant flares and their associated CMEs. The NGDC flares catalogue and the SOHO/LASCO CME catalogue are processed to associate X and M-class flares with CMEs based on timing information. Automated systems are created to process and associate years of flare and CME data, which are later arranged in numerical-training vectors and fed to machine-learning algorithms to extract the embedded knowledge and provide learning rules that can be used for the automated prediction of CMEs. Properties representing the intensity, flare duration, and duration of decline and duration of growth are extracted from all the associated (A) and not-associated (NA) flares and converted to a numerical format that is suitable for machine-learning use. The machine-learning algorithms Cascade Correlation Neural Networks (CCNN) and Support Vector Machines (SVM) are used and compared in our work. The machine-learning systems predict, from the input of a flare¿s properties, if the flare is likely to initiate a CME. Intensive experiments using Jack-knife techniques are carried out and the relationships between flare properties and CMEs are investigated using the results. The predictive performance of SVM and CCNN is analysed and recommendations for enhancing the performance are provided. / EPSRC
|
Page generated in 0.0933 seconds