Spelling suggestions: "subject:"sialic acid transport proteins"" "subject:"polysialic acid transport proteins""
1 |
The Synthesis and Evaluation of Functionalised Carbohydrates as Probes of Tumour MetastasisAbu-Izneid, Tareq, n/a January 2005 (has links)
Sialyltransferases, CMP-sialic acid synthetases and CMP-sialic acid transport proteins play a crucial role in the construction of cell surface glycoconjugates. These proteins also have a pivotal role to play in a number of diseases, including cancer. The sialyltransferase enzymes are responsible for transfering sialic acids from the donor substrate (CMP-sialic acid) to growing cell surface glycoconjugate chains within the Golgi apparatus. The CMP-sialic acid synthetase enzymes are responsible for the synthesis of the CMP-sialic acid, the donor substrate of the sialyltransferases in the nucleus, while the CMP-sialic acid transport proteins are responsible for transporting CMP-sialic acid from the Cytosol to the Golgi apparatus. When these proteins function in an abnormal way, hypersialylation results, leading to an increased level of sialylation on the cell surface. This increased level of sialylation aids in the detachment of primary tumour cells due to an increase in the level of overall negative charge, causing repulsion between the cancer cells. Therefore, the sialyltransferase enzymes, CMP-sialic acid synthetases and CMP-sialic acid transport proteins are intimately involved in the metastatic cascade associated with cancer. Chapter 1 provides a general introduction of cancer metastasis, discussing the roles of three target proteins (CMP-sialic acid synthetases, CMP-sialic acid transport proteins and sialyltransferases), as well as discussing their substrate specificities, with an emphasis on their involvements in cancer metastasis. The Chapter concludes with an overview of the types of compounds intended to be utilised as probes or inhibitors of these proteins. Chapter 2 describes the general approach towards the synthesis of CMP-Neu5Ac mimetics with a sulfur linkage in the presence of a phosphate group in the general structure 38. The precursor phosphoramidite derivative 45 was prepared and isolated in a good yield using Py.TFA. Unfortunately, the target compound 38 could not be prepared. Chapter 3 describes an alternative strategy wherein S-linked sialylnucleoside mimetics, of the general structure 39, with a sulfur linkage, but no phosphate group, between the sialylmimetic and the ribose moiety in the base is targeted. A series of these S-linked sialylnucleoside mimetics were successfully prepared. Cytidine, uridine, adenosine and 5-fluorouridine nucleosides were used to create a library of different nucleosides and with structural variability also present in the sialylmimetic portion. This small 'library' of 15 compounds was designed to shed light on the interaction of these compounds with the binding sites of the sialyltranferase, CMP-sialic acid synthetase and/or CM-sialic acid transport protein. Approaches towards the synthesis of O-linked sialylnucleoside mimetics of the general structure 40 are described in Chapter 4. Several methodologies are reported, as well as protecting group manipulations, for successful preparation of these sialylnucleoside mimetics. Cytidine and uridine were employed as the nucleosides, thus allowing a direct comparison between the O- and S-linked sialylnucleoside mimetics in biological evaluation. It appears from these synthetic investigations that gaining access into the O-linked series is not as straightforward as for the S-linked series, with alternative protecting group strategies required for the different nucleosides. The biological evaluation of some of the compounds reported in Chapters 3 and 4 is detailed in Chapter 5. The sialylnucleoside mimetics were evaluated, by 1H NMR spectroscopy, for their ability to inhibit CMP-KDN synthetase. In addition, an initial 1H NMR spectroscopic-based assay was investigated for inhibition studies of α(2,6)sialyltranferase in the absence of potential inhibitors. The final chapter (Chapter 6) brings together full experimental details in support of the compounds described in the preceding Chapters.
|
Page generated in 0.1346 seconds