• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Selective CO Adsorption Separation from CO2 via Cu-modified Adsorbents

Abbassi, Maria 18 May 2021 (has links)
CO2 capture and conversion appears to be a prominent solution to mitigate greenhouse gas emissions (GHG) and global warming issue. Among different CO2 conversion approaches, CO2 hydrogenation via reverse water gas shift (RWGS) reaction is one of the most promising technology to convert CO2 to CO. Subsequently, CO is transformed to value added chemicals or liquid fuels. To improve the overall CO2 conversion for RWGS reaction, product separation and recycling is being proposed. In this research, adsorption separation technology has been explored to selectively separate CO from CO2 in RWGS using pressure swing adsorption (PSA) process. To investigate the adsorption capacity and selectivity of CO, different porous materials have been identified for CO separation. In this research, activated carbons, ordered mesoporous silica, and metal organic framework materials were studied. Equilibrium isotherms of CO and CO2 were measured in a gravimetric system at a temperature of 25 °C for pressures up to 20 bar. Preliminary adsorption isotherm results had shown an insufficient CO uptake and low selectivity level compared to CO2, thus not justifying their application for CO separation. Herein, to improve the CO adsorption capacity and selectivity, Cu-based adsorbents were developed using copper (II) chloride (CuCl2) as a precursor to synthesize six different adsorbents. The adsorbents were prepared using two different synthesis methods; the modified polyol method for reduction and nanoparticle deposition of Cu (I) ions, and thermal monolayer auto-dispersion method. Furthermore, different copper (II) loadings were investigated to determine the monolayer dispersion capacity of CuCl2 on the support. The modified adsorbents by copper salt exhibited significantly high CO uptake with large CO/CO2 selectivity, reversing the results obtained before adsorbent modification. Thus, Cubased adsorbents are promising materials for CO separation and recovery from a gaseous mixture containing CO2.

Page generated in 0.1264 seconds