• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 22
  • 19
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 180
  • 180
  • 54
  • 50
  • 39
  • 33
  • 29
  • 26
  • 24
  • 21
  • 20
  • 19
  • 18
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamic modeling, optimization, and control of monoethanolamine scrubbing for CO2 capture

Ziaii Fashami, Sepideh 13 November 2012 (has links)
This work seeks to develop optimal dynamic and control strategies to operate post combustion CO2 capture in response to various dynamic operational scenarios. For this purpose, a rigorous dynamic model of absorption/stripping process using monothanolamine was created and then combined with a simplified steady state model of power cycle steam turbines and a multi-stage variable speed compressor in Aspen Custom Modeler. The dynamic characteristics and interactions were investigated for the plant using 30% wt monoethanolamine (MEA) to remove 90% of CO2 in the flue gas coming from a 100 MW coal-fired power plant. Two load reduction scenarios were simulated: power plant load reduction and reboiler load reduction. An ACM® optimization tool was implemented to minimize total lost work at the final steady state condition by adjusting compressor speed and solvent circulation rate. Stripper pressure was allowed to vary. Compressor surge limit, run off condition in rich and lean pumps, and maximum allowable compressor speed were found as constraints influencing the operation at reduced loads. A variable speed compressor is advantageous during partial load operations because of its flexibility for handling compressor surge and allowing the stripper and reboiler to run at optimal conditions. Optimization at low load levels demonstrated that the most energy efficient strategy to control compressor surge is gas recycling which is commonly applied by an anti-surge control system installed on compressors. Trade offs were found between initial capital cost and optimal operation with minimal energy use for large load reduction. The examples are, designing the stripper in a way that can tolerate the pressure two times larger than normal operating pressure, over sizing the pumps and over designing the compressor speed. A plant-wide control procedure was used to design an effective multi-loop control system. Five control configurations were simulated and compared in response to large load variations and foaming in the stripper and the absorber. The most successful control structure was controlling solvent rate, reboiler temperature, and stripper pressure by liquid valve, steam valve, and compressor speed respectively. With the investigated disturbances and employing this control scheme, development of an advanced multivariable control system is not required. This scheme is able to bring the plant to the targeted set points in about 6 minutes for such a system designed initially with 11 min total liquid holdup time.Frequency analysis used for evaluation of lean and rich tanks on the dynamic performances has shown that increasing the holdup time is not always helpful to damp the oscillations and rejecting the disturbances. It means there exists an optimum initial residence time in the tanks. Based on the results, a 5-minute holdup can be a reasonable number to fulfill the targets. / text
12

Adsorptive Removal of CO2 by Amine Functionalized Sorbents: Experimental and Kinetics Study

Zhao, An Unknown Date
No description available.
13

Post-Synthesis Functionalization of Porous Organic Polymers for CO2 Capture

Al Otaibi, Mona S. 07 1900 (has links)
Solid porous materials are network materials that contain space void. Porous Organic Polymers (POPs) are porous materials, which are constructed from organic building blocks and exhibit large surface area with low densities. Due to these characteristics, POPs have attracted attentions because of their potential use in application such as gas storage and chemical separation. This thesis presents a study of the synthesis of novel POP being a network based on 2,5- dibromobenzaldehyde and 1,3,5-triethynylbenzene linked together via Sonogashira- Hagihara (SH) coupling. This network showed a relatively good surface area of 770 m2/g and total pore volume of 0.59 cc/g. In addition, it proved to be chemically and thermally stable, maintaining the thermal stability up to 350oC. In addition to synthesize novel aldehyde-POP network, it was also possible to post synthetically modify a network via one-step post synthetic functionalization by amine. Ethelynediamine (EDA), Diethylenetriamine (DETA), and Tris(2-aminoethyl)amine (Tris-amine) are three different amines used for aldehyde-POP functionalization. The produced networks were aminated via different amine species substitution the aldehyde group present within the network. Modification to these networks resulted in a decrease in surface area from 770 m2.g-1 to 333 m2.g-1, 162 m2.g-1, and 211 m2.g-1 in respective to EDA, DETA, and Tris-amine. Although the surface areas were decreased, the CO2 adsorption was enhanced as evidenced by the increase of Qst (i.e., from 25 to 45 kJ.mol-1 for DETA at low coverage). Our findings are expected to strengthen existing research areas of the influence of different type of amines (e.g aromatic amine) on CO2 adsorption. Although amine grafting has been studied in other systems (e.g., PAFs and MOFs), we are the first to reported amine functionalized POPs using a novel one-step amine grafting PSM procedure. Future research might extend to study the interaction between CO2 and amine species under real working conditions.
14

Development of Solid Amine Immobilized Silica Sorbent and Gram Scale Process for CO2 Capture

Isenberg, Mathew 27 August 2010 (has links)
No description available.
15

Pyrene-Derived Porous Organic Polymers: Design, Synthesis, and Application to Gas Storage and Separation

Sekizkardes, Ali Kemal, PhD 01 January 2014 (has links)
Porous organic polymers (POPs) received great attention in recent years because of their novel properties such as permanent porosity, adjustable chemical nature, and remarkable thermal and chemical stability. These attractive features make POPs very promising candidates for use in gas separation and storage applications. In particular, CO2 capture and separation from gas mixtures by POPs have been intensively investigated in recent years because of the greenhouse nature of CO2, which is considered a leading cause for global warming. CO2 chemical absorption by amine solutions from the flue gas of coal-fired power plants suffers from several challenges such as high-energy consumption in desorption, chemical instability, volatility, and corrosive nature, limiting the widespread use of this technology. To mitigate these limitations, new adsorbents with improved CO2 capturing properties need to be designed, synthesized, and tested. Alternatively, the use of cleaner fuels such as methane can reduce CO2 release or completely eliminates it in the case of hydrogen. However, the on-board storage of methane and hydrogen for automotive applications remains a great challenge. With these considerations in mind, our research goals in this dissertation focus on the systematic design and synthesis of N-rich POPs and their use in small gas (H2 and CH4) storage as well as selective CO2 capture from gas mixtures. In particular, we have studied the effect of integrating pyrene and triazine building units into benzimidazole-linked polymers (BILPs) and covalent organic frameworks (COFs) on gas storage and separation. We have found that pyrene-based BILPs exhibit remarkable selective CO2 capturing capacities under industrial settings (VAS, PSA). However the methane and hydrogen storage capacities of BILPs were found to be only modest especially at high pressure due to their moderate surface area and pore volume. We addressed these limitations by the synthesis of a highly porous imine-linked COF (ILCOF-1), which has very high surface area and improved hydrogen and methane uptakes when compared to BILPs. We have demonstrated that the use of pyrene in BILPs and COFs can direct frameworks growth through - stacking and improve porosity and pore volume whereas the use of triazine is instrumental in improving the binding affinity of the frameworks towards CO2.
16

Fundamental insights into chemical looping combustion (CLC): a materials characterization approach to understanding mechanisms and size effects in oxygen carrier performance

Alalwan, Hayder Abdulkhaleq Khudhair 01 August 2018 (has links)
This work aims to develop fundamental insights about the underlying surface and bulk chemical processes instrumental to the efficiency of chemical looping combustion (CLC). CLC, which uses a solid-state oxygen carrier (e.g., metal oxides) to drive hydrocarbon combustion, is a promising combustion alternative that minimizes byproduct formation and facilities capture of CO2. In this work, we compare the performance of different transition metal oxides, namely iron, copper, cobalt, manganese, and nickel oxides, as oxygen carriers in CLC using CH4 as the reducing agent. Experiments used a continuous flow reactor across temperatures ranging from 500 to 800 oC and feed flowrates from 12.5 to 250 h-1. In addition to monitoring size-, temperature- and flow rate-dependent performance trends for CH4 conversion to CO2, microscopic and spectroscopic techniques were used to investigate the solid-state mechanism of oxygen carrier reduction and the coupled surface chemical and bulk material processes influencing performance. Bulk (XRD) and surface (XPS) analysis reveal that oxygen carrier reduction can be generally represented by two models, the unreacted shrinking core model (USCM) and the nuclei growth model (NNGM). The reduction of some metal oxides can also proceed via a two-stage solid-state mechanism; for example, hematite reduction to magnetite follows USCM, while the subsequent reductions of magnetite to wustite and wustite to iron metal follow NNGM. Furthermore, our results reveal that minimizing the particle size promotes oxygen carrier performance, but only for metal oxides reduced according to the USCM, where metal oxide reduction initiates on the particle surface. In contrast, no benefit of decreasing particle size was observed for materials reduced according to the NNGM because the reaction initiates in the particle bulk, such that a more critical determinant of reactivity may be the available oxygen carrier volume rather than surface area. Beyond these fundamental insights, cycling experiments were also performed to provide more practical information about the effect of oxygen carrier particle size on their long-term performance in CLC applications.
17

Dynamic Simulation of MEA Absorption Process for CO2 Capture from Power Plants

Harun, Noorlisa January 2012 (has links)
A dynamic MEA absorption process model has been developed to study the operability of this process in a dynamic fashion and to develop a control strategy to maintain the operation of the MEA scrubbing CO2 capture process in the presence of the external perturbations that may arise from the transient operation of the power plant. The novelty in this work is that a mechanistic model based on the conservation laws of mass and energy have been developed for the complete MEA absorption process. The model developed in this work was implemented in gPROMS. The process response of the key output variables to changes in the key input process variables, i.e., the flue gas flow rate and the reboiler heat duty, are presented and discussed in this study. In order to represent the actual operation of a power plant, the dynamic response of the MEA absorption process to a sinusoidal change in the flue gas flow rate was also considered in the present analysis. The mechanistic dynamic model was applied to develop a basic feedback control strategy. The implementation of a control strategy was tested by changing the operating conditions for the flue gas flow rate. The controlled variables, i.e., the percentage of CO2 absorbed in the absorber column and the reboiler temperature, were maintained around their nominal set point values by manipulating the valve stem positions, which determine the lean solvent feed flow rate at the top of the absorber column, and the reboiler heat duty, respectively. For the sinusoidal test, the amplitude of the oscillations observed for the controlled variables was smaller than those observed for the open-loop tests. This is because the variability of the controlled variables was transferred to the manipulated variable in the closed loop. The mechanistic dynamic model developed in this process can be potentially used as a practical tool that can provide insight regarding the dynamic operation of MEA absorption process. The model developed in this work can also be used as a basis to develop other studies related to the operability, controllability and dynamic flexibility of this process.
18

A framework for assessing the CO2 mitigation options for the electricity generation sub-sector

Alie, Colin January 2013 (has links)
The primary objective of this work is to develop an approach for evaluating GHG mitigation strategies that considers the detailed operation of the electricity system in question and to ascertain whether considering the detailed operation of the electricity system materially affects the assessment. A secondary objective is to evalute the potential benefit of flexible CO2 capture and storage. An electricity system simlator is developed based upon a deregulated electricity system containing markets for both real and reserve power. Using the IEEE RTS ???96 as a test case, the performance of the electricity system is benchmarked with GHG regulation. Two different implementations of CO2 capture are added to the electricity system ??? fixed CO2 capture and flexible CO2 capture ??? and the impact of having CCS is assessed. The results indicate that: - the assessment of GHG mtigation strategies for the electricity generation subsector should consider the detailed operation of the electricity system in question, - cost of generation alone is not necessarily a good indicator of the economic impact of GHG regulation or the deployment of a GHG mitigation strategy, - adding CCS, at even a single generating unit, can significantly reduce GHG emissions and moderate the ecnomic impact of GHG regulation relative to the cases where CCS is not present, and - a generating unit with a flexible CCS processes participates preferentially in the reserve market enabling it to increase its net energy benefit. It is conclued that there is a significant potential advantage to generating units with flexible CCS processes. The flexibiity of existing and novel CCS process should be an assessment and design criterion, respectively, and the development of novel CCS processes with optimial operability is a suggested area of future research activity. A reduced-order model of a coal-fired generating unit with flexible CO2 capture is developed and integrated into the MINLP formulation of an economic dispatch model. Both of these efforts, not observed previously in the literature, constitute an important contribution of the work as the methodology provides a template for future assessmments of CCS and other electricity mitigation strategies in the electricity generation subsector.
19

Dynamic Modelling and Control of MEA

Nittaya, Thanita January 2014 (has links)
Greenhouse gas (GHG) emission control has been extensively studied over the past decade. One GHG mitigation alternative is post-combustion carbon dioxide (CO2) capture using chemical absorption, which is a promising alternative due to its proven technology and the relative ease to install on existing coal-fired power plants. Nevertheless, the implementation of commercial-scale CO2 capture plants faces several challenges, such as high energy consumption, commercial availability, and geological CO2 storage. Therefore, there is a great incentive to develop studies that provide insights needed to design and dynamically operate industrial-scale CO2 capture plants for coal-fired power plants. This work presents a mechanistic dynamic model of a pilot plant of a post-combustion CO2 capture plant using the monoethanolamine (MEA) absorption processes. This model was implemented in gPROMS. The process insights gained from the sensitivity analysis, on six manipulated variables and six potential controlled variables, was used to determine promising control schemes for this pilot plant. This study then proposed three decentralized control structures. The first control scheme was designed based on the traditional-RGA (Relative Gain Array) analysis, whereas the other two control schemes were designed using heuristics. The performance evaluation of those control structures were conducted under eight scenarios, e.g. changes in flue gas composition, set point tracking, valve stiction, reboiler heat duty constraint, and flue gas flow rate. Under the condition where the reboiler temperature is to be controlled, a control scheme obtained from the heuristic showed faster response to achieve the process control objectives (90% CO2 capture rate and 95 mol% CO2 purity in the CO2 product stream) than the RGA-based control scheme. Furthermore, this study describes a step-by-step method to scale-up an MEA absorption plant for CO2 capture from a 750 MW supercritical coal-fired power plants. This industrial-scale CO2 capture plant consists of three absorbers (11.8 m diameter, 34 m bed height) and two strippers (10.4 m diameter, 16 m bed height) to achieve 87% CO2 captured rate and 95% CO2 purity in the CO2 product stream. It was calculated that the reboiler heat duty of 4.1GJ is required to remove 1 tonne of CO2 at the base case condition (20 kmol/s of flue gas flow rate with 16.3 mol% of CO2). The mechanistic model of an industrial-scale CO2 capture plant including a proposed control structure was evaluated using different scenarios. The performance evaluation result revealed that this plant can accommodate a maximum flue gas flow rate of +22% from the nominal condition due to absorbers??? flooding constraints. Moreover, it is able to handle different disturbances and offers prompt responses (After a plant is disturbed by an external perturbation, control variables in that plant are able to return to their set points in timely fashion using the adjustment of manipulated variables.) without significant oscillating signal or offset. In addition, this study highlights that the poor wetting in the strippers can be avoided by the implementation of a process scheduling, which has not been presented in any publications. Based on the above, the mechanistic models of CO2 absorption plants and proposed control structures provide insights regarding dynamic behaviour and controllability of these plants. In addition, the industrial-scale CO2 capture plant model can be used for future studies, i.e. integration of power plant and CO2 capture plant, feasibility of plant operation, and controllability improvement.
20

Computational Evaluation of Metal-Organic Frameworks for CO2 Capture

Yu, Jiamei 03 October 2013 (has links)
Metal-organic frameworks (MOFs), a new class of porous solids comprised of metal-containing nodes linked by organic ligands, have become promising materials for gas separations. In particular, their flexible chemistry makes them attractive for CO2 capture from flue gas streams in post-combustion plants. Although numerous efforts have been exerted on the investigation of MOFs for CO2 capture, the exploration of the effects from coexisting components present in very dilute proportions in flue gases is limited because of the experimental difficulty to determine the coadsorption of CO2 with trace components. In this regard, molecular simulations show superiority. In this study, molecular simulations are used to estimate the influence of impurities: water, O2, and SO2 on post-combustion CO2 capture in MOFs. Firstly, two MOFs with coordinatively unsaturated metal sites (CUMs), HKUST-1 and Mg-MOF-74 are explored. Increase of CO2 adsorption is observed for hydrated HKUST-1; on the contrary, the opposite water adsorption behavior is observed in hydrated Mg-MOF-74, leading to decrease of CO2 adsorption. Further, water effects on CO2 capture in M-HKUST1 (M = Mg, Zn, Co, Ni) are evaluated to test whether comparing the binding energy could be a general method to evaluate water effects in MOFs with CUMs. It is found that the method works well for Zn-, Co-, and Ni-HKUST1 but partially for Mg-HKUST1. In addition, the effects of O2 and SO2 on CO2 capture in MOFs are also investigated for the first time, showing that the effects of O2 may be negligible but SO2 has negative effects in the CO2 capture process in HKUST-1 systems. Secondly, the influences of water on CO2 capture in three UiO-66 MOFs with functional groups, –NH2, –OH and –Br are explored, respectively. For UiO-66-NH2 and -OH, the presence of water lowers CO2 adsorption significantly; in contrast, water shows much smaller effects in UiO-66-Br. Moreover, the presence of SO2 decreases water adsorption but enhances CO2 uptakes slightly in both UiO-66-NH2 and -Br. Finally, the effects of impurities on CO2 capture in a MOF with suitable pore size (PCN-200) are analyzed. The adsorption of both CO2 and N2 decrease substantially even with 1% water present in the mixture. In addition, the presence of low SO2 does not show obvious effect in PCN-200. However, a lower CO2 adsorption is observed for a mixture with a high SO2 content. In collaboration with experimental groups, the performances of three new MOFs in CO2 capture are evaluated using molecular simulations. The computational results demonstrate the feasibility of precisely designing single-molecule traps (SMT) for CO2 capture. Also, a multi-functional MOF with micro-porosity, open Cu2+ sites and amine groups has also proved computationally the selective adsorption of CO2 over CH4 and N2. Last, we demonstrate that charge separation is an effective strategy for improving CO2 capture in MOFs.

Page generated in 0.0544 seconds