• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 287
  • 146
  • 112
  • 56
  • 35
  • 13
  • 11
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 847
  • 276
  • 111
  • 100
  • 91
  • 86
  • 56
  • 55
  • 52
  • 48
  • 47
  • 47
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Toward adapting spatial audio displays for use with bone conduction the cancellation of bone-conducted and air-conducted sound waves /

Stanley, Raymond M. January 2006 (has links)
Thesis (M. S.)--Psychology, Georgia Institute of Technology, 2007. / Corso, Gregory, Committee Member ; Davis, Elizabeth, Committee Member ; Walker, Bruce, Committee Chair.
72

Some boundary element methods for heat conduction problems

Hamina, M. (Martti) 12 April 2000 (has links)
Abstract This thesis summarizes certain boundary element methods applied to some initial and boundary value problems. Our model problem is the two-dimensional homogeneous heat conduction problem with vanishing initial data. We use the heat potential representation of the solution. The given boundary conditions, as well as the choice of the representation formula, yield various boundary integral equations. For the sake of simplicity, we use the direct boundary integral approach, where the unknown boundary density appearing in the boundary integral equation is a quantity of physical meaning. We consider two different sets of boundary conditions, the Dirichlet problem, where the boundary temperature is given and the Neumann problem, where the heat flux across the boundary is given. Even a nonlinear Neumann condition satisfying certain monotonicity and growth conditions is possible. The approach yields a nonlinear boundary integral equation of the second kind. In the stationary case, the model problem reduces to a potential problem with a nonlinear Neumann condition. We use the spaces of smoothest splines as trial functions. The nonlinearity is approximated by using the L2-orthogonal projection. The resulting collocation scheme retains the optimal L2-convergence. Numerical experiments are in agreement with this result. This approach generalizes to the time dependent case. The trial functions are tensor products of piecewise linear and piecewise constant splines. The proposed projection method uses interpolation with respect to the space variable and the orthogonal projection with respect to the time variable. Compared to the Galerkin method, this approach simplifies the realization of the discrete matrix equations. In addition, the rate of the convergence is of optimal order. On the other hand, the Dirichlet problem, where the boundary temperature is given, leads to a single layer heat operator equation of the first kind. In the first approach, we use tensor products of piecewise linear splines as trial functions with collocation at the nodal points. Stability and suboptimal L2-convergence of the method were proved in the case of a circular domain. Numerical experiments indicate the expected quadratic L2-convergence. Later, a Petrov-Galerkin approach was proposed, where the trial functions were tensor products of piecewise linear and piecewise constant splines. The resulting approximative scheme is stable and convergent. The analysis has been carried out in the cases of the single layer heat operator and the hypersingular heat operator. The rate of the convergence with respect to the L2-norm is also here of suboptimal order.
73

Inflammation of the heart in heart disease

Quigley, Gillian Margaret January 2013 (has links)
Heart failure patients have dysfunction of the cardiac conduction system that contributes to a high burden of arrhythmias including atrial fibrillation and sudden cardiac death. Heart failure has been associated with the inflammatory response, but it is unknown if inflammation is playing a role in the remodelling of the cardiac conduction system in heart failure. Inflammation has been shown to be present in the myocardium from failing hearts and it is known to have detrimental effects on cardiac function, inducing fibrosis, remodelling of ion channels and even arrhythmias. However, the effect of inflammation on the cardiac conduction system has not been investigated. The aims of this study were to determine if there is an increase of pro-inflammatory cytokines and inflammatory cells in the cardiac conduction system in heart failure. In addition, to identify if there is possible inflammation-associated fibrosis and apoptosis in the cardiac conduction system in heart failure. To test these aims, three models of heart failure were used: a rat model of pulmonary arterial hypertension, a rabbit model of congestive heart failure and a rat model of myocardial infarction. In the rat model of pulmonary arterial hypertension there was a bradycardia, a prolongation of the QT interval, and an increase in the atrioventricular and ventricular refractory periods, suggesting electrical remodelling in these animals. The rats with pulmonary arterial hypertension displayed an increase in pro-inflammatory cytokines such as interleukins 1β and TGFβ in the right side of the heart, including the sinoatrial node and right Purkinje fibres of the cardiac conduction system. In addition, in these areas, there was an increase in components of the extracellular matrix, including fibronectin, collagen I and vimentin. Histology revealed regions of non-myocyte nuclei, only in the right ventricle of the rats with pulmonary arterial hypertension. Immunohistochemistry demonstrated patches of CD68 and vimentin expression (markers for macrophages and fibroblasts, respectively) in the right side of the heart in these animals. TUNEL staining also revealed an increase in apoptosis in the right side of the heart. In the rabbit model of congestive heart failure, the region most affected by inflammation was the right atrium, while few changes were measured in the ventricles or cardiac conduction system. Although these results are surprising, it is suggested that the atria could be more sensitive to the physical stretch produced in this model. In the rat model of myocardial infarction, there were regions of non-myocyte nuclei in the border zone. This region also had increases in pro-inflammatory and fibrosis markers. In conclusion, this work has presented the novel finding that there can be inflammation in the cardiac conduction system in heart failure. This could be contributing to the arrhythmias seen in heart failure patients. This could possibly lead the way to anti-inflammatories as a possible novel therapeutic for heart failure patients.
74

Thermal wave propagation in bismuth single crystals at 4 K

Brown, Christopher Richard January 1969 (has links)
Continuous wave thermal propagation experiments were made with two single crystals of bismuth at frequencies up to 7 kHz. The experiments were performed at temperatures close to 4 K (i. e. close to the dielectric-like thermal conductivity peak). Accurate phase shift measurements were made in order to permit the detection of small departures from diffusive propagation. Attenuation measurements were also made. A summary of some microscopic theories of time-dependent thermal propagation in dielectric crystals is given. It is concluded that, for dielectric crystals in both the "hydrodynamic" and "ballistic" phonon gas regimes, the initial deviations from diffusive propagation will be described by a modified heat equation of the Vernotte type: [formula omitted] with appropriate identifications of the relaxation time. The possibility that the small numbers of charge carriers present in bismuth might lead to different forms of deviation is explored. Several types of thin-film insulating layers and superconducting alloy thermometers were investigated. Kodak Photo-Resist was found to be the most useful insulating material. This was used in conjunction with constantan heater films and Pb-In alloy thermometer films. The heat wave detection system employed a radio frequency thermometer bias current, a radio frequency tuned circuit, an envelope detector and phase-sensitive detection of the audio frequency heat wave signals. Heat wave phase lags were measured with a precision of 1°, using the phase-sensitive detector as a null detector. The measurements were analyzed in terms of a thermal transmission line model based on the modified heat equation given above. The electrical analogue of τ in such a model is L/R. A thermal leakage conductance term ⩋(electrical analogue G/C) was included in the model. The results at low frequencies were in excellent agreement with those expected on the basis of the transmission line model under conditions of diffusive propagation at high attenuations. Values of the apparent diffusivity obtained from these measurements were in reasonable agreement with the results of D. C. experiments made by other workers on comparable specimens. The quantity ⩋/ω was shown to be small at all frequencies used. Phase lag measurements at higher frequencies indicated significant departures from diffusive propagation in both crystals. (The crystals had different orientations.) The measurements in this range suggested a harmonic-wave-like mode of propagation. This mode appeared to break down at the highest frequencies examined. Evidence is presented to show that the observed deviations reflected thermal properties of the bismuth crystals rather than properties of the thin films, or spurious electrical effects. The apparent wave velocities were lower, and the corresponding relaxation times were longer than those predicted on the basis of the microscopic theories and from the diffusivity values obtained at low frequencies. In view of these numerical discrepancies, it is suggested that the wave-like mode could be a mode peculiar to the bismuth system, rather than the "second sound" mode predicted for ideal dielectrics. Some further experiments are suggested. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
75

The low temperature thermal conductivity of cesium iodide

Johnson, David Lawrence January 1967 (has links)
The thermal conductivity of three crystals of cesium iodide ranging in size from three to eight millimeters diameter was measured in the temperature range 1.15°K to 5.40°K. Thermal conductivity measurements were made using the thermal potentiometer method. Differences in the thermal conductivity of the three samples were interpreted in terms of phonon scattering from the boundaries of the crystals, and from internal structure defects. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
76

Heat pulses in Al203 single crystals at low temperatures.

Chung, David Yih January 1966 (has links)
Heat pulse experiments have been made on Al₂O₃ single crystals in the temperature range 3.8° K to 35°K with the aim of gaining further insight into the nature of heat transport in solids at low temperatures. Short heat pulses were produced by heating a thin metal film evaporated on to one end of the crystal. The thermal pulse arriving at the other end of the crystal was detected by an indium film thermometer placed in a coil connected to a sensitive radio-frequency bridge, so that the variation of resistance was finally displayed on an oscilloscope. The pulses received at low temperatures (3.8°K to 8°K) show two quite separate parts, an initial sharp rise followed by a slow rise, starting at a definite delay time corresponding to the phonon velocity in the medium. The results up to 18°K do not show appreciable variation in delay time, showing that the heat pulse propagation has not entered a second sound region. As the temperature increases, the amplitude of the initial phonon pulse decreases very much compared with the amplitude of the slow rise. Above 18°K, the small sharp rise can no longer be seen clearly so that the delay time is no longer well defined, and at 30°K only the slow rise is observed. It is found that the conventional theory of heat conduction is inadequate to interpret our results at low temperatures, as it fails to predict the finite delay of the initial rise of the received pulse. A phenomenological approach is taken, using a modified heat equation which has an electrical transmission line analogy. Using Laplace transforms, a solution is obtained and the results calculated with a computer are compared with the experimental curves. It is found that the pulse shape can be interpreted quite satisfactorily, especially at the lowest temperatures. The thermal diffusivity, D, for different temperatures is found, and the apparent thermal conductivity, K, is calculated and compared with Herman's (1955) results. The solution of the modified heat equation is also calculated for liquid He II at 0.25°K and compared with the heat pulses observed by Kramers et al (1954); very good agreement is obtained. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
77

Numerical algorithms for the solution of a single phase one-dimensional Stefan problem

Milinazzo, Fausto January 1974 (has links)
A one-dimensional, single phase Stefan Problem is considered. This problem is shown to have a unique solution which depends continuously on the boundary data. In addition two algorithms are formulated for its approximate numerical solution. The first algorithm (the Similarity Algorithm), which is based on Similarity, is shown to converge with order of convergence between one half and one. Moreover, numerical examples illustrating various aspects of this algorithm are presented. In particular, modifications to the algorithm which are suggested by the proof of convergence are shown to improve the numerical results significantly. Furthermore, a brief comparison is made between the algorithm and a well-known difference scheme. The second algorithm (a Collocation Scheme) results from an attempt to reduce the problem to a set of ordinary differential equations. It is observed that this set of ordinary differential equations is stiff. Moreover, numerical examples indicate that this is a high order scheme capable of achieving very accurate approximations. It is observed that the apparent stiffness of the system of ordinary differential equations renders this second algorithm relatively inefficient. / Science, Faculty of / Statistics, Department of / Graduate
78

Applications of lie symmetry techniques to models describing heat conduction in extended surfaces

Mhlongo, Mfanafikile Don 09 January 2014 (has links)
A research thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirement for the degree of Doctor of Philosophy. August 7, 2013. / In this thesis we consider the construction of exact solutions for models describing heat transfer through extended surfaces (fins). The interest in the solutions of the heat transfer in extended surfaces is never ending. Perhaps this is because of the vast application of these surfaces in engineering and industrial processes. Throughout this thesis, we assume that both thermal conductivity and heat transfer are temperature dependent. As such the resulting energy balance equations are nonlinear. We attempt to construct exact solutions for these nonlinear models using the theory of Lie symmetry analysis of differential equations. Firstly, we perform preliminary group classification of the steady state problem to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended by one element. Some reductions are performed and invariant solutions that satisfy the Dirichlet boundary condition at one end and the Neumann boundary condition at the other, are constructed. Secondly, we consider the transient state heat transfer in longitudinal rectangular fins. Here the imposed boundary conditions are the step change in the base temperature and the step change in base heat flow. We employ the local and nonlocal symmetry techniques to analyze the problem at hand. In one case the reduced equation transforms to the tractable Ermakov-Pinney equation. Nonlocal symmetries are admitted when some arbitrary constants appearing in the governing equations are specified. The exact steady state solutions which satisfy the prescribed boundary conditions are constructed. Since the obtained exact solutions for the transient state satisfy only the zero initial temperature and adiabatic boundary condition at the fin tip, we sought numerical solutions. Lastly, we considered the one dimensional steady state heat transfer in fins of different profiles. Some transformation linearizes the problem when the thermal conductivity is a differential consequence of the heat transfer coefficient, and exact solutions are determined. Classical Lie point symmetry methods are employed for the problem which is not linearizable. Some reductions are performed and invariant solutions are constructed. The effects of the thermo-geometric fin parameter and the power law exponent on temperature distribution are studied in all these problems. Furthermore, the fin efficiency and heat flux are analyzed.
79

The thermal conductivity of gases at high pressure.

Weininger, Joseph L. January 1949 (has links)
No description available.
80

A Numerical Study of the Conjugate Conduction-Convection Heat Transfer Problem

Webster, Robert Samuel 12 May 2001 (has links)
This study investigates some of the basic aspects of conjugate, or coupled, heat transfer problems. The ultimate interest is in the improvement of an existing computational fluid dynamics (CFD) code by the inclusion of such a coupling capability. Many CFD codes in the past have treated the thermal boundary conditions of a bounding solid as the simple cases of either a surface across which there is no heat flux, or as a surface along which the temperature is a constant with respect to both space and time. These conditions are acceptable for some applications, but many real-world problems require a more-realistic treatment of the thermal wall condition. A thermal coupling may be accomplished by maintaining a continuous heat flux and temperature across the fluid-solid boundary. A heat flux is calculated on the fluid-side of the interface, and this is used as a boundary condition for a heat-conduction solver to calculate the temperature field within the solid and return an interface temperature to the fluid. This process is executed for each time-step iteration of the code, and, therefore, the temperature field of the solid and the fluid-solid interface temperature are allowed to evolve with time and space. A new heat-conduction solver is developed and coupled with an existing flow solver. For this reason, some of the study is devoted to the testing of the accuracy of the new heat-conduction solver on simple problems for which there exist analytical solutions. Additional coverage is devoted to the possibility of thermal communication between solid grid blocks. This is due to the fact that multiple grid blocking of the solid may be required for more complex geometries. For such cases, a similar procedure as that described for the fluid-solid interface is used to accomplish the solid-solid block-to-block communication. Relatively simple test cases of fluid-solid and solid-solid coupling are conducted; these cases are limited to two-dimensional grids. Other limitations include: the assumption of constant thermophysical properties for the solid, no consideration for thermal expansion of the solid, and no consideration for the radiation mode of heat transfer. The results indicate that the heat-conduction/flow solver shows potential.

Page generated in 0.0332 seconds