• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The characterisation of the freezing damage response during flowering in European and Middle Eastern wheat cultivars (Triticum aestivum L.)

Al-Issawi, Mohammed Hamdan Edan January 2013 (has links)
Wheat (Triticum aestivum L.) is occasionally exposed to low temperature during flowering and huge economic losses can occur especially in some key production countries such as Australia. Although it is generally predicted that there will be a rise in global temperature there are still predicted to be risks associated with low temperature for temperate crops. Post head emergence frost damage remains a major constraint to increasing wheat production. Five Iraqi varieties (Abu-Ghariab, Fatah, Sham6, IPA95 and IPA99) were screened for their frost hardiness (LT50). Abu-Ghariab was chosen for further investigations along with the European cv. Claire because the acclimated frost hardiness level in these two varieties (LT50 -8.07 and -8.01°C for Claire and Abu-Ghariab respectively) was found to be significantly lower than the other varieties in this study. Several techniques were employed including REC%, IR thermography and molecular analysis of cold acclimation in order to characterise the frost resistance of those two varieties. REC% revealed that both Claire and Abu-Ghariab could tolerate some freezing when the spikes were just visible (ZCK 51-60) with an acclimation shift of the LT50 of -1.6 and -2.11°C respectively but this was not apparent at later growth stages. Based on molecular analysis, cold acclimation was shown to be activated at ZCK 51-60 in both varieties. Cbf14 was expressed after 8 hours exposure to acclimatising temperatures (4°C) and then declined to a low, but still up-regulated level in both varieties and this led to expression of the COR15a protein. These molecular changes correlated with the frost tolerance recorded at ZCK 51-60. It was concluded that the possibility existed to up-regulate cold acclimation after spike emergence if there was enough environmental stimulus. Molybdenum (Mo) was demonstrated to work synergistically with low temperature in increasing the expression of Cbf14 and COR15a. The European wheat cv. Claire showed a higher capacity (-8.14°C) to be acclimated than Iraqi wheat (-7.40°C) under the effect of both Mo and acclimation temperatures. Mo alone increased the expression of Cbf14 in both varieties but did not increase the frost tolerance. Observations of ice nucleation using an infrared thermography (IR) revealed that supercooling is highly likely in spikes and some spikes avoided frost damage even when the temperature fell to -12°C. It was observed that the proportion of frozen spikes was 22.8% while the remainder supercooled. Spraying plants with distilled water was not effective in facilitating ice nucleation in wheat spikes. Observations also revealed that spikes that did freeze started freezing at temperatures of -4 to -5 °C close to temperature of the putative constitutive frost hardiness of un-acclimated wheat and it is suggested that this may reflect that many laboratory freezing experiments may not actually freeze until -5°C. The anthesis stage of wheat was found to be the most vulnerable stage and it needs to be given more attention in terms of research to up-regulate cold acclimation. Frost damage to wheat during flowering continues to be a serious problem in certain production areas and therefore continued effort in characterising and finding suitable solutions to this are imperative.
2

Conserved glycine residues control transient helicity and disorder in the cold regulated protein, Cor15a

Sowemimo, Oluwakemi 22 March 2019 (has links)
COR15A is a cold regulated disordered protein from Arabidopsis thaliana that contributes to freezing tolerance in plants by protecting membranes. It belongs to the (LEA) Late Embryogenesis Abundant group of proteins that accumulate during the later stage of seed development and are expressed in various parts of the plant. During freezing-induced cellular dehydration, COR15A transitions from a disordered structure to a mostly α-helical structure that binds and stabilizes chloroplast membranes when cells dehydrate due to freezing. We hypothesize that increasing the transient α-helicity of COR15A under normal conditions will increase its ability to bind and protect chloroplast membranes when cells are frozen. To test this hypothesis, conserved glycine residues were mutated to alanine to increase α-helicity. NMR spectroscopy was used to examine structural changes of these mutants compared to wildtype in 0% and 20% TFE. The impact of these mutations on the stability of model membranes during a freeze-thaw cycle was investigated by fluorescence spectroscopy. The results of these experiments showed the mutants had a higher content of α-helical secondary structure than wildtype in 0% and 20% TFE. Increased α-helicity of the COR15A mutants improved membrane stabilization during freezing. Altogether, our results suggest the conserved glycine residues are important for maintaining the disordered structure of the protein.

Page generated in 0.0623 seconds