• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 18
  • 9
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 213
  • 56
  • 39
  • 21
  • 21
  • 19
  • 18
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Invasive Hosts and their Context Dependent Relationships with Native Symbionts

Lockett, Cameron St. John 11 June 2024 (has links)
Symbiotic relationships display plasticity through time, depending on a variety of factors that include host properties, symbiont densities, and environmental conditions. Invasive species can affect symbiotic relationships by introducing invasive symbionts, reducing the population of native symbionts, or competing for native symbionts as a resource. There is an established symbiotic relationship between crayfish and annelid worms in the order Branchiobdellida. Branchiobdellidan worms can have a mutualistic cleaning symbiosis with crayfish, or at times become parasitic and feed on crayfish gill tissue if nutrients on the host are low. With the introduction of invasive crayfish in the Southern Appalachians in Virginia, branchiobdellidan worm populations have sharply declined due to invasive crayfish being less competent hosts for the symbionts. However, degree of competency as a host may differ among invasive species to, as invasive hosts have their own unique context-dependent symbiotic relationships. To investigate how symbiotic relationships differ between invasive hosts, I encouraged symbiotic relationships between invasive hosts Faxonius virilis and Faxonius cristavarius and native symbionts Cambarincola ingens. In two experiments spanning several months, I observed changes in growth rates of hosts and damage to gill tissues over varying levels of symbiont exposure. One species of invasive host, F. cristavarius, had increased growth rates when exposed to native symbionts at low symbiont densities, while for the other invasive host, F. virilis, growth rates and gill chamber damage was not impacted by the presence of symbionts. I also compared an invasive host F. cristavarius to a native host Cambarus appalachiensis to measure the response of growth rate, symbiont damage to gills, and behavior of worms across a gradient of symbiont exposure. The native host's growth rates increased over time, but not due to an effect of symbionts. However, the invasive host exhibited effects from parasitism when symbiont densities were high. My findings suggest that invasive hosts can have their own unique context-dependent relationship with native symbionts. Because there is no one-size-fits-all rule for invasive hosts, when invasive hosts enter a region, new symbiotic relationships can be formed that are beneficial for invasive hosts and native symbionts. Invasive hosts or native symbionts could also be rejected by the other which may lead to decreases in either of their populations. / Master of Science / Symbiotic relationships are relationships between two or more organisms lasting for long periods of time and are often associated with proximity or touch. In symbiotic relationships there can be a host and a symbiote. The difference between the host and symbiont can be found in their roles such as protection from predators or parasites or by providing nutrients or transportation and the difference in size with the host being larger. Symbiotic relationships are not static and can change over time due to a variety of reasons, such as host size, symbiont abundance, or nutrient availability. The introduction of harmful non-native species, otherwise known as invasive species, can disrupt symbiotic relationships across ecosystems. Invasive species can introduce non-native symbionts, and also can become potential hosts for native symbionts. The relationship between crayfish and Branchiobdellidan worms, an order of small, segmented worms, has been established over decades of research as a useful system for studying symbiosis. Branchiobdellidan worms can provide a beneficial cleaning service by removing harmful symbionts or bacteria from their crayfish host. Alternatively, they can become parasites and feed on crayfish gills if nutrients are not available on the host. Introduced invasive crayfish can decrease the population of brachiobdellidan worms within the Southern Appalachians in Virginia. However, an established relationship between native symbionts and invasive crayfish hosts has not been studied. To investigate the effects of a symbiotic relationship over the time span of several months between invasive hosts and native symbionts, I experimentally reduced the ability of invasive hosts to remove branchiobdellidan symbionts to allow native branchiobdellidan worms time to acclimate on to invasive crayfish and establish a symbiotic relationship. In two experiments over several months, I recorded changes in host growth rates and gill damage. Invasive hosts had an increased growth rate when there was a low abundance of worms. I also compared an invasive host to a native host to see how changes in growth rates, gill chamber damage, and locations of worms on their host may differ. The native host's growth rates increased, but the invasive host had a negative growth rate when worm densities were too high. My findings suggest invasive hosts can have their own unique symbiotic relationship with native symbionts. When invasive hosts are introduced to a region, native symbiont populations may either decrease or native symbionts may find compatible invasive hosts. By examining relationships between native symbionts and invasive hosts, we can understand how invasions may influence symbiotic relationships and how other organisms are affected in the ecosystem.
52

A Survey of Crayfish in the Pigeon River and its Tributaries in Tennessee and North Carolina

Dunn, David Casey B 01 December 2010 (has links)
The Pigeon River watershed has been the focus of a ¬¬major recovery project to reintroduce fish and other aquatic species into the river where they were historically present. A paper mill at Pigeon River Kilometer/Mile (PRKM 102.1/PRM 63.2) began operations in 1908 and discharged effluents which had a detrimental impact on the aquatic wildlife. Recent modifications to the mill have significantly improved effluent quality such that most aquatic organisms are recolonizing the river. The present study is a baseline survey of crayfish species in the Pigeon River and its tributaries; it also includes a comparison of the mean Catch Per Unit Effort (CPUE) in four different reaches of the stream and documents diversity upstream and downstream of the paper mill. Crayfish are important to the aquatic ecosystem and food web because they serve as cutters that help to break down leaf litter and carrion and are also a food source for predators. Crayfish were collected using modified minnow traps and electroshocking and by snorkeling along ‘turning’ rocks; the method used was based on characteristics of the stream reach sampled, including water depth, flow, transparency, and type of substrate. A total of 1,320 crayfish specimens representing seven species was collected during the eight month study. Crayfish were found in nine Pigeon River tributaries , in the main stem of the Pigeon River upstream of the paper mill (PRKM 102.1/PRM 63.2), and below the Progress Energy Dam (PRKM 61.1/PRM 38.0). No crayfish were found downstream of the paper mill in the river itself; however, crayfish were found downstream from the Progress Energy Dam down to the Pigeon River’s confluence with the French Broad River.
53

Modulation of Synaptic Vesicle Pools by Serotonin and the Spatial Organization of Vesicle Pools at the Crayfish Opener Neuromuscular Junction

Bilkey, Jessica 01 May 2015 (has links)
The crayfish claw opener neuromuscular junction (NMJ) is a biological model for studying presynaptic neuromodulation by serotonin and synaptic vesicle recycling. Serotonin acts on crayfish axon terminals to increase the release of the neurotransmitter glutamate, but a complete understanding of its mechanisms of action are unknown. In order to sustain enhanced neurotransmission over long periods of time, it was hypothesized that serotonin recruits (activates) a population of previously non-recycling vesicles to become releasable and contribute to neurotransmission. To determine if serotonin activates a distinct population of synaptic vesicles, FM1-43 fluorescence unloading experiments were performed on crayfish excitatory opener axon terminals. These experiments could not resolve a serotonin-activated population of synaptic vesicles, but instead revealed that synaptic vesicles change behaviour in axon terminals independent of serotonin, with vesicles becoming less likely to exocytose and unload FM1-43 dye over time. The change in behaviour was hypothesized to be due to conversion of vesicles from a recycling (releasable) status to a reserve (reluctant to release) status. Synaptic vesicle pool localization was then tested using photoconversion of FM1-43 and transmission electron microscopy techniques. The spatial location of FM1-43-labeled vesicles fixed 2 minutes following 20 Hz stimulation did not reveal retention of vesicles specifically near release sites and the distribution of FM1-43-labeled vesicles was not significantly different between early (2 min) and late (180 min) time points. Terminals fixed 30 seconds following stimulation, however, contained numerous endosome-like structures - the most frequently observed structures resembled large vesicles, which were the equivalent of 2-5 regular vesicle sizes. These results suggest that crayfish axon terminals recycle vast amounts of membrane in response to sustained 20-Hz stimulation and endocytosis appears to occur via multiple routes with the most common being through large vesicle intermediates. / Graduate
54

A Study of a Branchiobdellid from Denton County, Texas

Koepp, Stephen J. 05 1900 (has links)
In this study, branchiobdellids were collected from crayfish captured from two adjacent sites in Denton County, Texas. Identification of the branchiobdellid, Cambarincola vitrea Ellis, was first made and then work was extended to include several topics of ecological interest.
55

Ecosystem engineering impacts of invasive species on river banks : signal crayfish and Himalayan balsam

Faller, Matej January 2018 (has links)
This thesis investigates the impact of two invasive ecosystem engineers on the river banks. Invasive species generate significant global environmental and economic costs and represent a particularly potent threat to freshwater ecosystems. Ecosystem engineers are organisms that modify their physical habitat. Therefore this thesis will explore the interaction of these two types of species and their impacts on the example of the impact of signal crayfish and Himalayan balsam The obtained results indicate that there are few avenues through which invasive ecosystem engineers can influence river bank processes. While many uncertainties remain, due to the intrinsic complexity of river ecosystems, a multitude of anthropogenic stressors that they are increasingly subjected to and a wide array of ecosystem services that rivers provide to people, it is important to consider the role of invasive ecosystem engineers in river management practices. on river banks. The work included analyses and development of conceptual models for the understanding of invasive ecosystem engineers, followed by four research chapters aimed at answering specific questions. A study of signal crayfish impact is primarily focused on the impact of burrows that crayfish dig as shelter and their influence on riverbank erosion. The interaction between habitat characteristics, the occurrence of burrows and erosion is analysed on three different levels of spatial scale: bank section in reach, reach in the catchment and bank section in the catchment. Bank section in reach survey (Chapter 4) focused on a reach heavily impacted by crayfish burrowing on the River Windrush, UK, in order to study the maximum effect of burrowing. Also, smaller spatial extent enabled detailed study of three sets of variables as well as an assessment of the impact that signal crayfish population density has on burrowing. Reach in catchment spatial scale expanded the survey to cover 103 river reaches in the Thames catchment and was based on a combination of habitat information from publicly available online data sets, primarily the River Habitat Survey database and rapid field surveys that recorded burrows and erosion. Bank section in catchment-scale was based on the same 103 sites, but the main focus of field observations were ten metres long bank sections for which habitat, burrows and erosion information were collected. Overall, burrowed banks were more likely to be characterised by cohesive bank material, steeper bank profiles with large areas of bare bank face, often on outer bend locations and were associated with bank profiles with signs of erosion. There were indications that signal crayfish burrowing is contributing to the river bank erosion, but no conclusive results have been made. Study of the impact of the Himalayan balsam was undertaken on eight sites at the River Brenta in Italy and it was focused on three main aspects. Firstly it was established that extent of Himalayan balsam domination over native vegetation varies widely depending on the habitat conditions and native plants encountered. Secondly, it was established that there are no conclusive differences in the extent of erosion and deposition on transects covered by native vegetation and Himalayan balsam. Thirdly, measurement of traits of individual plants showed significant differences in traits of individual plants that are known to have consequences for river bank erosion and deposition.
56

Development of new genome-informed genotyping tools for Aphanomyces astaci

Minardi, Diana January 2017 (has links)
Aphanomyces spp. are water moulds, eukaryotic fungus-like organisms, belonging to the class Oomycota. This genus contains primary pathogens of plants and animals as well as opportunistic and saprotrophic species. One of the animal parasites (A. astaci) is the causal agent of the crayfish plague, a disease listed by the World Organisation for Animal Health (OIE). It is believed that A. astaci was first introduced into Italy from the US in the late 19th century and rapidly spread in Europe causing the decline of native crayfish. It currently threatens to wipe out the UK native white-clawed crayfish (Austropotamobius pallipes). Random amplified polymorphic DNA (RAPD-PCR) on pure isolates of A. astaci distinguished five genotypes (A, B, C, D, and E). This distinction proved to be a useful tool for epidemiological studies aimed at understanding the history and spread of the disease in Europe; furthermore, there are differences in virulence among genotypes. No discriminatory morphological or physiological characters are available and widely used markers such as the internal transcribed spacer (ITS), the divergent domains regions (D1-D2) of nuclear large subunit (LSU) rDNA, and cytochrome c oxidase subunit I (COI) also fail to discriminate between A. astaci genotypes. There are some practical drawbacks to genotype by the currently available genotyping methods. Whole genome sequencing (WGS) was used to catalogue DNA single nucleotide variants and genotype-unique genomic regions that could be exploited as phylogenetic markers. These newly developed molecular markers were tested both on pure cultures and historical samples derived from outbreaks and carrier crayfish available in our laboratories, validating these genotyping methods, which represent new diagnostic tools aiding the detection and prevention of crayfish plague.
57

Febrile response and activity in the crayfish, Pacifasticus leniusculus trowbridgii

Fletcher, Kenneth A. 01 January 1988 (has links)
Poikilothermic and endothermic animals demonstrate febrile response to infection with bacteria or to injection with endogenous pyrogen extract of Prostaglandin E1. Febrile response is measured in endotherms as a relative change in metabolically achieved body temperature and in poikilotherms as an increase in selected temperatures relative to previously established preferred temperatures. Final preferendum change with environmental factors or associated physiological states.
58

Modulation of Local Reflexes During Centrally Commanded Movements

Tahir, Uzma H 26 April 2013 (has links)
During centrally orchestrated movements, the nervous system must distinguish between appropriate and inappropriate reflexes. I studied local postural flexion reflexes of the crayfish that are evoked by unexpected touch. An isolated abdomen was used which permitted recording and stimulating of tailfan afferents, nerve cord interneurons, and postural motor neurons. Stimulation of the afferents evoked a postural flexion response of the medium tonic and large phasic motor neurons of the superficial flexor nerve; a flexion motor program was then excited by stimulating descending interneurons. Afferent stimulation evoked a smaller motor response during the motor program than before or after. These results indicate that the postural reflex responses to sensory stimulation are inhibited at a site presynaptic to the motor neurons during the flexion motor program. Application of Picrotoxin (blocked inhibition) to the primary afferent-to-mechanosensory interneuron synapse did not prevent the modulation of the postural flexion reflex during the flexion motor program.
59

Interspecies aggression and social dominance in crayfish

Luan, Xin. January 2009 (has links)
Thesis (Ph.D.)--Bowling Green State University, 2009. / Document formatted into pages; contains vi, 78 p. : ill. Includes bibliographical references.
60

The influence of coarse woody debris, disturbance, and restortion on biological communities in sandy coastal plain streams

Mitchell, Richard Morgan. Feminella, Jack W. January 2009 (has links)
Dissertation (Ph.D.)--Auburn University, / Abstract. Includes bibliographic references.

Page generated in 0.0298 seconds