• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

HYDRATE PLUG FORMATION PREDICTION TOOL – AN INCREASING NEED FOR FLOW ASSURANCE IN THE OIL INDUSTRY

Kinnari, Keijo, Labes-Carrier, Catherine, Lunde, Knud, Hemmingsen, Pål V., Davies, Simon R., Boxall, John A., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
Hydrate plugging of hydrocarbon production conduits can cause large operational problems resulting in considerable economical losses. Modeling capabilities to predict hydrate plugging occurrences would help to improve facility design and operation in order to reduce the extent of such events. It would also contribute to a more effective and safer remediation process. This paper systematically describes different operational scenarios where hydrate plugging might occur and how a hydrate plug formation prediction tool would be beneficial. The current understanding of the mechanisms for hydrate formation, agglomeration and plugging of a pipeline are also presented. The results from this survey combined with the identified industrial needs are then used as a basis for the assessment of the capabilities of an existing hydrate plug formation model, called CSMHyK (The Colorado School of Mines Hydrate Kinetic Model). This has recently been implemented in the transient multiphase flow simulator OLGA as a separate module. Finally, examples using the current model in several operational scenarios are shown to illustrate some of its important capabilities. The results from these examples and the operational scenarios analysis are then used to discuss the future development needs of the CSMHyK model.
2

LAST 20 YEARS OF GAS HYDRATES IN THE OIL INDUSTRY: CHALLENGES AND ACHIEVEMENTS IN PREDICTING PIPELINE BLOCKAGE

Estanga, Douglas A., Creek, Jefferson, Subramanian, Sivakumar, Kini, Ramesh A. 07 1900 (has links)
The continuous effort to understand the complicated behavior of gas hydrates in multiphase flow has led to the evolution of a new paradigm of hydrate blockage. The hydrate community continues to debate the impact of kinetics, agglomeration, and oil chemistry effects on hydrate blockage formation in pipelines and wellbores. However, today’s industry for the most part still continues to rely on thermodynamic means to develop strategies to prevent hydrates altogether in its production systems. These strategies such as thermal insulation of equipment, electric heating, dead oil displacement, and methanol injection add CAPEX, OPEX, and operational complexities to system design. In spite of high oil prices, adopting such strategies to mitigate perceived hydrate blockage risk can end up taxing economics of marginal fields. Developing a comprehensive multiphase flow simulator capable of handling the transient aspects of production operations - shut-in, restart, blowdown and blockage prediction - continues to drive the research in Flow Assurance. New operating strategies based on risk management approach seem to be evolving from the model predictions. A shift in paradigm that allows for operations inside the hydrate region based on sound risk assessment and management principles could be a factor enabling future developments of marginal fields. This paper discusses the challenges and opportunities that have led to the change in focus from prevention of hydrates to prevention of blockage, and describes some initial successes in the development of a first generation empirical tool for the prediction of hydrate blockages in flow lines. Also presented in this article are new experimental data that shed some light on different ways that hydrate blockages can manifest in the field.

Page generated in 0.0213 seconds