• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Approaches to Gravity Scattering Amplitudes

Rajabi, Sayeh January 2014 (has links)
Quantum Field Theory (QFT) provides the essential background for formulating the standard model of elementary particles and, moreover, practically all other theories attempting to explore the physical laws of nature at the sub-atomic level. One of the main observables in QFT are the scattering amplitudes, physical quantities which encode the information of the scattering process of particles. Accordingly, having authentic, well-defined and feasible prescriptions for the calculations of amplitudes is of huge importance to theoretical physicists. Actual calculations show that the text-book prescription, the Feynman method, besides in general being very cumbersome also hides some of the beautiful mathematical features of amplitudes. The last decade has seen tremendous efforts and achievements to improve such calculations, particularly in supersymmetric gauge theories, which have also led to better understanding of QFT itself. Among the known physically and mathematically interesting quantum field theories is perturbative gravity and its supersymmetric version, N=8 supergravity- much less understood than gauge theory. Following the developments in gauge theory, this dissertation mainly aims at exploring scattering amplitudes in gravity as a quantum field theory, using the modern approaches to QFT. The goal is not only to improve our understanding of gravity amplitudes by applying part of the known modern methods of calculations to it but also to introduce and develop new ones.

Page generated in 0.0457 seconds