• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Evaluation of Induced Shear Stress on Endothelial Cellular Adhesion Molecules

Crabb, Edward B 01 January 2019 (has links)
The pathophysiology of atherosclerotic cardiovascular disease (CVD) is highlighted by vascular dysfunction and low-grade vascular inflammation. Furthermore, the site-specific distribution of atherosclerosis throughout the arterial vasculature is primarily determined by local hemodynamic force. Therefore, this dissertation outlines three experiments designed to investigate the role of acute mental and physical (i.e., aerobic exercise), and vascular wall shear stress (SS) on the inflammatory aspects of atherosclerosis. Chapter 2 examines the effect of acute laboratory-induced mental stress on intracellular pro-inflammatory signaling pathways in peripheral blood mononuclear cells. Chapter 3 investigates the impact of acute laboratory-induced mental stress and maximal aerobic exercise on the concentration of soluble VCAM-1 (sVCAM-1) and CX3CL1/fractalkine (sCX3CL1) in human serum. Lastly, Chapter 4 examines the role of short- (30 min) and long-term (24 hr) low-to-negative oscillating SS (LOSS) and high laminar SS (HLSS) on the expression and secretion (i.e., cleavage) of cell-membrane VCAM-1 and CX3CL1 by human umbilical vein endothelial cell cultures in vitro. Together, these experiments provide evidence that acute psychological stress, maximal aerobic exercise, and HLSS influence vascular inflammation and adhesive properties of the vessel wall. More specifically, the results from Chapter 2 provide evidence that acute mental stress promotes the immune-cell mediated synthesis of pro-inflammatory cytokines in circulation. In addition, Chapter 3 and Chapter 4 demonstrate that the elevations in blood flow and hemodynamic force associated with maximal aerobic exercise, and unidirectional high SS may have the capacity to alter the expression of endothelial-bound cellular adhesion molecules, in part by eliciting their release from the vessel wall.

Page generated in 0.0529 seconds