• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of podocalyxin in hematopoiesis and cell migration

Tan, Poh Choo 11 1900 (has links)
CD34 and its relatives, Podocalyxin and Endoglycan, comprise of a family of surface sialomucins expressed by hematopoietic stem/progenitor cells, and vascular endothelia. Recent data suggest that they serve as either pro- or anti-adhesion molecules depending on their cellular context and their post-translational modifications. We were interested in identifying Podocalyxin ligands and their cellular distribution and understanding the role of these factors in signaling, adhesion and migration. Using both a lambda phage screen assay and mass spectrometry, we identified the Na⁺/H⁺ exchanger regulatory factor-i (NHERF-l) as a selective ligand for Podocalyxin and Endoglycan but not for the closely related CD34. Furthermore, we showed that NHERF-1 is expressed by all, lineage⁻, Sca-1⁺ and c-kit⁺ (LSK) cells, which are known to express Podocalyxin and have long-term repopulating characteristics of hematopoietic stem cells. In addition, upon IL-3 stimulation of a factor dependent cell line (FDC-P 1) these proteins re-localize and co-localize in an asymmetrical pattern. By using a lentiviral based shRNA system to silence Podocalyxin and NHERF- i proteins, we observed that migration across stromal monolayer towards a CXCL12 and SCF gradient is significantly impeded in cells that lack Podocalyxin but not NHERF-1. Following in vitro stimulation with a combination of CXCL12 and SCF we observed that Podocalyxin co-associates with CXCR4. Furthermore, cells lacking Podocalyxin have decreased phospho-AKT, a key signaling molecule downstream of c-kit and CXCR4 receptors. Taken together, our data supports the conclusion that Podocalyxin co-association with CXCR4 modulates downstream signaling to efficiently regulate HSC homing.
2

Role of podocalyxin in hematopoiesis and cell migration

Tan, Poh Choo 11 1900 (has links)
CD34 and its relatives, Podocalyxin and Endoglycan, comprise of a family of surface sialomucins expressed by hematopoietic stem/progenitor cells, and vascular endothelia. Recent data suggest that they serve as either pro- or anti-adhesion molecules depending on their cellular context and their post-translational modifications. We were interested in identifying Podocalyxin ligands and their cellular distribution and understanding the role of these factors in signaling, adhesion and migration. Using both a lambda phage screen assay and mass spectrometry, we identified the Na⁺/H⁺ exchanger regulatory factor-i (NHERF-l) as a selective ligand for Podocalyxin and Endoglycan but not for the closely related CD34. Furthermore, we showed that NHERF-1 is expressed by all, lineage⁻, Sca-1⁺ and c-kit⁺ (LSK) cells, which are known to express Podocalyxin and have long-term repopulating characteristics of hematopoietic stem cells. In addition, upon IL-3 stimulation of a factor dependent cell line (FDC-P 1) these proteins re-localize and co-localize in an asymmetrical pattern. By using a lentiviral based shRNA system to silence Podocalyxin and NHERF- i proteins, we observed that migration across stromal monolayer towards a CXCL12 and SCF gradient is significantly impeded in cells that lack Podocalyxin but not NHERF-1. Following in vitro stimulation with a combination of CXCL12 and SCF we observed that Podocalyxin co-associates with CXCR4. Furthermore, cells lacking Podocalyxin have decreased phospho-AKT, a key signaling molecule downstream of c-kit and CXCR4 receptors. Taken together, our data supports the conclusion that Podocalyxin co-association with CXCR4 modulates downstream signaling to efficiently regulate HSC homing.
3

Role of podocalyxin in hematopoiesis and cell migration

Tan, Poh Choo 11 1900 (has links)
CD34 and its relatives, Podocalyxin and Endoglycan, comprise of a family of surface sialomucins expressed by hematopoietic stem/progenitor cells, and vascular endothelia. Recent data suggest that they serve as either pro- or anti-adhesion molecules depending on their cellular context and their post-translational modifications. We were interested in identifying Podocalyxin ligands and their cellular distribution and understanding the role of these factors in signaling, adhesion and migration. Using both a lambda phage screen assay and mass spectrometry, we identified the Na⁺/H⁺ exchanger regulatory factor-i (NHERF-l) as a selective ligand for Podocalyxin and Endoglycan but not for the closely related CD34. Furthermore, we showed that NHERF-1 is expressed by all, lineage⁻, Sca-1⁺ and c-kit⁺ (LSK) cells, which are known to express Podocalyxin and have long-term repopulating characteristics of hematopoietic stem cells. In addition, upon IL-3 stimulation of a factor dependent cell line (FDC-P 1) these proteins re-localize and co-localize in an asymmetrical pattern. By using a lentiviral based shRNA system to silence Podocalyxin and NHERF- i proteins, we observed that migration across stromal monolayer towards a CXCL12 and SCF gradient is significantly impeded in cells that lack Podocalyxin but not NHERF-1. Following in vitro stimulation with a combination of CXCL12 and SCF we observed that Podocalyxin co-associates with CXCR4. Furthermore, cells lacking Podocalyxin have decreased phospho-AKT, a key signaling molecule downstream of c-kit and CXCR4 receptors. Taken together, our data supports the conclusion that Podocalyxin co-association with CXCR4 modulates downstream signaling to efficiently regulate HSC homing. / Medicine, Faculty of / Medicine, Department of / Experimental Medicine, Division of / Graduate

Page generated in 0.0124 seconds