• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 173
  • 76
  • 27
  • 22
  • 8
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 416
  • 79
  • 56
  • 46
  • 45
  • 42
  • 37
  • 35
  • 32
  • 29
  • 29
  • 28
  • 28
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Characterization of the iron center in cysteine dioxygenase and kinetic analyses of flavin binding by the alkanesulfonate flavin reductase

Sun, Honglei, Ellis, Holly R. January 2006 (has links) (PDF)
Thesis(M.S.)--Auburn University, 2006. / Abstract. Vita. Includes bibliographic references (p.90-94).
52

The selenium analog of cystine and the diselenides of the lower fatty acids

Gordon, John Charles, January 1935 (has links)
Thesis--Catholic University of America, 1936. / Vita. "Literature cited": p. 42-43.
53

The selenium analog of cystine and the diselenides of the lower fatty acids,

Gordon, John Charles, January 1935 (has links)
Thesis--Catholic University of America, 1936. / Vita. "Literature cited": p. 42-43.
54

Design, synthesis, and evaluation of cysteine protease inhibitors

Campbell, Amy. January 2005 (has links)
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2006. / Murthy, Niren, Committee Member ; Doyle, Donald, Committee Member ; Fahrni, Christoph, Committee Member ; May, Sheldon, Committee Member ; Powers, James, Committee Chair.
55

Functional characterization of placental cathepsins

Bojja, Aruna Sri. January 2009 (has links)
Thesis (M.S.)--University of Delaware, 2009. / Principal faculty advisor: Robert W. Mason, Dept. of Biological Sciences. Includes bibliographical references.
56

Cysteine proteases activity and gene expression studies in soybean nodules during development and drought stress

Du Plessis, Magdeleen January 2013 (has links)
Activity and transcription profiles of two classes of cysteine proteases, papain- and legumain-like cysteine proteases, as well as their potential inhibitors, cysteine protease inhibitors (cystatins), were investigated in soybean nodules during nodule development and after drought inducing premature senescence. During nodule development total protease activity increased with major activity bands detected protease zymography in older nodules. Expressed cysteine proteases during nodule development were detected by tagging proteases with the cysteine protease inhibitor DCG-04 with major DCG-04 tagged bands found in both young and old nodules. Increase in protease activity was associated with a significant decrease in nitrogenase activity of nodules measured as acetylene reduction. Semi-quantitative RT-PCR for cysteine protease and cystatin transcription profiling showed a decrease in transcription during development and also after drought treatment of several papain-like cysteine proteases (Glyma04g04400, Glyma17g05670, Glyma10g35100, and Glyma04g03090). In contrast, transcription of three legumain-like cysteine proteases (Glyma17g14680, Glyma05g04230 and Glyma14g10620) increased during nodule development and also after drought treatment. Transcription of two cystatins (Glyma13g27980 and Glyma05g28250) increased during nodule development with Glyma13g27980 strongly up-regulated after drought treatment and Glyma05g28250 constitutively strongly expressed in both well-watered and drought treated nodules. Overall, the study has contributed in establishing an expression profile of cysteine proteases and cystatins in soybean nodules. This knowledge provides a basis which can be used to determine the importance of the individual components of the cysteine protease – cystatin system, during soybean nodule development and during stress-induced premature nodule senescence. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Plant Science / unrestricted
57

Designing Active Site-Directed Covalent Probes for Tyrosine Phosphatases

Hong, Suk ho January 2022 (has links)
Tyrosine phosphorylation is an important post-translational modification in cells that modulates key cellular pathways. Tyrosine phosphatases are the class of enzymes that remove this modification from proteins, yet we know relatively little about how they are regulated in various signaling contexts. Activity-based probes that successfully target active sites of tyrosine phosphatases and report on their activities can fill in this gap. We show the assessment of various thiol-reactive groups for their ability to target catalytic cysteine residues with specificity. Then we construct and screen a library of fragment-like compounds for their on-target and off-target reactivities. We also discuss theoretical considerations for screening covalent inhibitors for their kinetic parameters and show this using our experimental data. Lastly, we augment compounds selected from the library to enable click chemistry for reporter group attachment for use on the whole proteome, ultimately through mass spectrometry-based proteomics methods. We show enrichment of target proteins. These target-centric design efforts will yield new insights into the general development processes of activity-based probes or inhibitors.
58

Influence of Growth Factors on Bovine Embryo Development

Lott, Whitney Meghan 08 September 2008 (has links)
Many attempts have been made to improve the in vitro production of cattle embryos by refining in vitro maturation (IVM) and culture systems. Cysteine supplementation to IVM media of bovine oocytes increases cellular glutathione production, which reduces reactive oxygen species (ROS). Similarly, beneficial effects of growth factors for improving the rate of blastocyst development have been reported, but combined effects are unknown. This study was conducted to determine the additive effect of the antioxidant cysteine with epidermal growth factor (EGF) and/or insulin-like growth factor-I (IGF-I) on subsequent embryo development. Bovine oocytes from slaughterhouse ovaries were matured in TCM-199 (control), with or without the addition of 0.6 mM cysteine (C) at 0 or 12 h of maturation. After in vitro fertilization, embryos were allocated to culture treatments containing synthetic oviductal fluid medium. Culture treatments included fetal calf serum (FCS, 4%) alone; IGF-I (100 ng/mL); EGF (10 ng/mL); and IGF-I+EGF (100 ng/mL+10 ng/mL) for all IVM treatments. Although rates for blastocysts development were not different among treatments, an increased proportion of embryos attaining morula formation was achieved when cysteine was added to the IVM media (12 h C IGF-I+EGF, 41.4%; 0 h C EGF, 40.0%) as compared to control (FCS: 34.6%). When cysteine treatments were combined, percent cleavage was greater for IGF-I+EGF (70.8%) compared to FCS (61.2%). The abundance of mRNA from the apoptotic genes, Bax and Bcl-2, and the oxidative stress genes, copper (Cu)-zinc (Zn) superoxide dismutase (SOD; SOD1) and manganese (Mn) SOD (SOD2) in embryos was assessed. No significant treatment effect was observed on the expression of apoptotic and oxidative stress genes. Bax was expressed strongly (4-fold) in morulae with the addition of IGF-I, but was less prevalent in all other morula and blastocyst groups relative to FCS. There was slightly less expression of both SOD1 and SOD2 with treatments compared to FCS in morulae and blastocysts, indicative of low mitochondrial activity and/or a low level of oxidative stress in treatments. There was no significant treatment effect on total cell number, apoptotic nuclei, or apoptotic index. In conclusion, supplementation of cysteine during IVM of oocytes, in conjunction with growth factors could effectively be used as a replacement for FCS. / Master of Science
59

Effects of Cysteine Modification on Microtubule-Motor Protein Function and Tubulin Assembly

Phelps, Kalmia Kniel 29 January 1999 (has links)
Chemical modification is a powerful technique for probing functionally important amino acids. N-ethylmaleimide (NEM) reacts readily with exposed sulfhydryl groups, and has previously been shown to inhibit the activity of MT-motor proteins and tubulin assembly. This project seeks to investigate the mechanisms by which NEM affects motor function and inhibits MT minus end assembly. Recombinant motor domains of Drosophila kinesin (DK350 and DK375), Ncd (MC1), and squid kinesin (p181) were modified by NEM. NEM treatment was shown to affect the binding of MC1, but not recombinant kinesin proteins to MTs in the co-sedimentation assay. NEM treatment decreased the MT-stimulated ATPase rates of MC1 and DK350 in an NEM-concentration dependent manner, but did not affect the rate of DK375. Observed effects with DK375, p181, and MC1 were correlated with the number of labeled cysteines determined with [3H]NEM. As previously known, when NEM-treated tubulin was combined with untreated tubulin at certain ratios, assembly occurred only at the MT plus end. To investigate the mechanism by which NEM affects the polarity of tubulin assembly, tubulin was treated with NEM and assembly was analyzed using video-enhanced differential interference contrast microscopy. [3H]NEM was used to follow the time course of modification and to determine the number of modified sites per tubulin subunit. After 10 minutes, one cysteine was labeled on both a and b tubulin and this was sufficient to inhibit minus end assembly. Additionally, having one subunit labeled out of five tubulin subunits was sufficient to observe this effect. Protein digestion methods were used to aid in elimination of cysteines, to characterize potential critical cysteines in MC1, a, and b tubulin. / Master of Science
60

Design, synthesis and evaluation of cysteine protease inhibitors

Ovat, Asli 06 April 2009 (has links)
Cysteine proteases are important drug targets due to their involvement in many biological processes such as protein turnover, digestion, blood coagulation, apoptosis, cell differentiation, cell signaling, and the immune response. In this thesis, we have reported the design, synthesis and evaluation of clan CA and clan CD cysteine protease inhibitors. Aza-peptidyl Michael acceptor and epoxide inhibitors for asparaginyl endopeptidases (legumains) from the bloodfluke, Schistosoma mansoni (SmAE) and the hard tick, Ixodes ricinus (IrAE) were designed and synthesized. SARs were similar, but with some notable exceptions. Both enzymes prefer disubstituted amides to monosubstituted amides in the P1' position and potency increased as we increased the hydrophobicity of the inhibitor in this position. Extending the inhibitor to P5 resulted in increased inhibitory potency, especially against IrAE, and both enzymes prefer small over large hydrophobic residues in the P2 position. Aza-peptide Michael acceptor inhibitors are more potent than aza-peptide epoxide inhibitors and, for some of these compounds, second order inhibition rate constants are the fastest yet discovered. We have also synthesized aza-peptidyl Michael acceptor and epoxide inhibitors for the parasitic cysteine proteases; cruzain, rhodesain. We have found that monosubstituted amides were favored over disubstituted amides indicating the involvement of the amide hydrogen in a H-bond network. We have shown that aza-peptide epoxides were as potent as Michael acceptors and we have obtained compounds with IC50 values as low as 20 nM. We have worked on the synthesis of heterocyclic peptidyl α-ketoamides, peptidyl ketones and aza-peptidyl ketones as calpain inhibitors. We have synthesized peptidyl α-ketoamides with nucleotide bases in the primed region to create compounds that can cross the blood-brain barrier. We have improved the potency by introducing a hydrophobic group on the adenine ring. We have obtained compounds with Ki values in the nanomolar range. We have designed peptidyl aminoketones as a new class of inhibitors for calpain. Peptidyl aminoketones were less potent than peptidyl α-ketoamides but still reasonable inhibitors of calpain that have the potential to cross the BBB.

Page generated in 0.0338 seconds