• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transient Receptor Potential Channels in Endothelium: Solving the Calcium Entry Puzzle?

Nilius, Bernd, Droogmans, Guy, Wondergem, Robert 01 April 2003 (has links)
Many endothelial cell (EC) functions depend on influx of extracellular Ca2+, which is triggered by a variety of mechanical and chemical signals. Here, we discuss possible pathways for this Ca2+ entry. The superfamily of cation channels derived from the "transient receptor potential" (TRP) channels is introduced. Several members of this family are expressed in ECs, and they provide pathways for Ca2+ entry. All TRP subfamilies may contribute to the Ca2+ entry channels or to the regulation of Ca2+ entry in EC. Members of Ca2+ entry channels in endothelium probably belong to the canonical TRP subfamily, TRPC. All TRPC1-6 have been discussed as Ca2+ entry channels that might be store-operated and/or receptor-operated. More importantly, knockout models of TRPC4 have proven that this channel is functionally involved in the regulation of endothelial-dependent vasorelaxation and in the control of EC barrier function. TRPC1 might be an important candidate for involvement of eodothelial growth factors. TRPC3 is unequivocally important for a sustained EC Ca2+ entry. ECs express different patterns of TRPCs, which may increase the variability of TRPC channel function by formation of different multiheteromers. Among the two other TRP subfamilies, TRPMV and TRPM, at least TRPV4 and TRPM4 are EC channels. TRPV4 is a Ca2+ entry channel that is activated by an increase in cell volume, which might be involved in mechano-sensing, by an increase in temperature, and perhaps by ligand-activation. TRPM4 is a nonselective cation channel, which is not Ca2+ permeable. It is probably modulated by NO and might be essential for regulating the inward driving force for Ca2+ entry. Possible modes of TRP channel regulation are described, involving (a) activation via the phospholipase (PL)Cβ and PLCγ pathways; (b) activation by lipids (diacylglycerol [DAG], arachidonic acid); (c) Ca2+ depletion of Ca2+ stores in the endoplasmic reticulum; (d) shear stress; and (e) radicals.
2

Critical Role of Oxidatively Damaged DNA in Selective Noradrenergic Vulnerability

Zhan, Yanqiang, Raza, Muhammad U., Yuan, Lian, Zhu, Meng Yang 01 December 2019 (has links)
An important pathology in Parkinson's disease (PD) is the earlier and more severe degeneration of noradrenergic neurons in the locus coeruleus (LC) than dopaminergic neurons in the substantia nigra. However, the basis of such selective vulnerability to insults remains obscure. Using noradrenergic and dopaminergic cell lines, as well as primary neuronal cultures from rat LC and ventral mesencephalon (VM), the present study compared oxidative DNA damage response markers after exposure of these cells to hydrogen peroxide (H2O2). The results showed that H2O2 treatment resulted in more severe cell death in noradrenergic cell lines SK-N-BE(2)-M17 and PC12 than dopaminergic MN9D cells. Furthermore, there were higher levels of oxidative DNA damage response markers in noradrenergic cells and primary neuronal cultures from the LC than dopaminergic cells and primary cultures from the VM. It included increased tail moments and tail lengths in Comet assay, and increased protein levels of phosphor-p53 and γ-H2AX after treatments with H2O2. Consistent with these measurements, exposure of SK-N-BE(2)-M17 cells to H2O2 resulted in higher levels of reactive oxygen species (ROS). Further experiments showed that exposure of SK-N-BE(2)-M17 cells to H2O2 caused an increased level of noradrenergic transporter, reduced protein levels of copper transporter (Ctr1) and 8-oxoGua DNA glycosylase, as well as amplified levels of Cav1.2 and Cav1.3 expression. Taken together, these experiments indicated that noradrenergic neuronal cells seem to be more vulnerable to oxidative damage than dopaminergic neurons, which may be related to the intrinsic characteristics of noradrenergic neuronal cells.

Page generated in 0.0572 seconds