Spelling suggestions: "subject:"calcitriol -- analogs & derivatives."" "subject:"kalcitriol -- analogs & derivatives.""
1 |
Combined effects of vitamin D receptor agonists and histone deacetylase inhibition on vitamin D-resistant squamous carcinoma cellsDabbas, Basel. January 2007 (has links)
The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), is a key calcium (Ca++) regulatory hormone. It is also associated with functions unrelated to Ca++ homeostasis. Here, special attention is paid towards the anticancer properties of 1,25D. 1,25D strongly inhibits the growth of well-differentiated head and neck squamous cell carcinoma (HNSCC) derived cell lines. However, advanced, less differentiated, HNSCC cell lines (e.g. SCC4) are partially resistant to 1,25D. Resistance to nuclear receptor (NR) agonists is a common event that occurs in other NR-related treatments. For example, some leukemias develop resistance to the usually effective retinoic acid (RA) treatment. However, treating RA-resistant cells with HDAC inhibitors (HDACi) sensitizes them to RA. Thus, this study aims to investigate how treatment with TSA, an HDACi, would affect the response of SCC4 cell lines to 1,25D. We found that TSA had a variety of effects on 1,25D-regulated gene expression. Combined treatment with 1,25D and TSA increased the expression of cell-cycle regulating proteins, but also enhanced the downregulation of key target genes. Given the potential of the 1,25D/HDACi combination in combating cancers, two chimeric compounds, each containing parts of 1,25D and an HDACi, were synthesized in collaboration with Dr. James Gleason (Dept. of Chemistry, McGill). These 1,25D analogs have the HDACi-like structure replacing the 1,25D side chain. Both compounds proved to be agonists of the vitamin D receptor. Moreover, the TSA-substituted compound, called triciferol, effectively induced a-tubulin as well as histones acetylation. This study underlines the potential of combining 1,25D and TSA in cancer treatment, and reveals that bi-functional 1,25D analogs can be produced with potentially enhanced therapeutic activity.
|
2 |
Combined effects of vitamin D receptor agonists and histone deacetylase inhibition on vitamin D-resistant squamous carcinoma cellsDabbas, Basel. January 2007 (has links)
No description available.
|
3 |
Genome-wide identification of target genes to vitamin D and analysis of the molecular mechanisms underlying its therapeutic propertiesTavera Mendoza, Luz Elisa. January 2007 (has links)
No description available.
|
Page generated in 0.1401 seconds