• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 78
  • 75
  • 15
  • 7
  • 7
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 216
  • 69
  • 68
  • 62
  • 31
  • 27
  • 23
  • 20
  • 19
  • 19
  • 19
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Study on calcium phosphate deposition on titanium surface in simulated body fluid /

Zhao, Zhanfeng. January 2006 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2006. / Includes bibliographical references. Also available in electronic version.
12

Investigation and electromechanical solution for the limited injectability of the hydraulic calcium phosphate paste / Étude et développement d'un système électromécanique pour résoudre l'injectabilité limitée de la pâte hydraulique phosphocalcique

Habib, Mohamed Ahmed Metwally January 2010 (has links)
This thesis combines four manuscripts of which I am the first author. The first manuscript examines the phase separation process and related process parameters. This article provides detailed experimental results of the delivery and separation process. During the delivery of 40% Liquid-to-Powder-Ratio (LPR) paste, only 62[plus ou moins]3 % of the paste initially present in the 10-mL syringe could be injected. Thereafter, the remaining paste in the syringe was not amendable to injection suggesting the existence of liquid separation. The LPR of the extruded fraction of a 37% LPR paste ranged from 40.9[plus ou moins]2.0 % to 42.7[plus ou moins]2.1 %. On the other hand, a shortage of water content was measured for the paste left in the syringe. Furthermore, this shortage was gradual, ranging from 27.3[plus ou moins]1.9 % at the plunger side to 30.9[plus ou moins]1.6 % at the tip side. In addition, this article presents rheological measurements of the paste showing clearly that the limitation was not related to the viscosity of the paste but rather to the phase separation process. Specifically, the yield stresses were around 66[plus ou moins]2 Pa, 19[plus ou moins]2 Pa, and 8[plus ou moins]0 Pa for 40%, 50%, and 65% LPR suspensions, respectively. For the three studied LPRs, the viscosity rapidly dropped with an increase of shear rate to a level below 10 Pas. The second manuscript examines the possibility that fine particles migrate faster than large particles during injection, hence leading to a so-called size separation. This size separation process can be expected from the scientific literature, but had not been investigated prior to my study. In a way, the size separation is very similar to the phase separation process. An electrohydraulic system was used to control the delivery process. The result of this second study, showed no evidence of size separation. It was therefore concluded that the main mechanism underlying the limited injectability is the liquid phase filtration through the porous particles bed of the paste. The third manuscript examines the role of powder porosity ([epsilon]) and permeability. For that purpose, an electronically assisted device was used to measure the powder permeability. In this study, three powders were examined for comparison and better understanding. In addition, the powder permeability was correlated with the paste injectability. Adding 3 wt% of a fine nanosized powder to the [bêta]-TCP powder decreased the mixture permeability at a porosity of [varepsilon] = 67.5% from 6.4.10[exposant]-13 m[exposant]2 to 5.6.10[exposant]-13 m[exposant]2 and increased the injected volume fraction from 70.8[plus ou moins]1.9 % to 84.5[plus ou moins]0.9 %. The results showed clear evidence that the injectability can be improved by admixing different powders. However, permeability was not a strong predictor of the liquid separation phenomenon. The last manuscript provides a practical solution to reduce phase separation occurrence. For that purpose an ultrasonication process was suggested and applied during the delivery process to improve injectability. Specifically, sonicating the paste reduced agglomeration, decreased paste viscosity due to the shear thinning and therefore reduced phase separation. The result of the ultrasound assisted delivery was remarkably effective since it has been able to fully deliver highly concentrated paste, with minimal force exerted by hand. For instance, the injectable volume fraction of a 40% LPR paste injected with a 5-mL syringe increased significantly from 71.3[plus ou moins]0.5 % to 99.1[plus ou moins]0.9 % using 150 microns ultrasonic amplitude at a 20 kHz frequency. This chapter provides clear evidence that an electromechanical approach can be used to improve the injectability of a calcium phosphate paste. This thesis addresses an important limitation of calcium phosphate cements, namely phase separation during injection. This thesis also provides a scientific understanding and a practical solution for this problem. The electromechanical solution proposed here is one out of several possible solutions. Future work may focus on building numerical tools to help in the design of the powder and to understand the link between powder properties, rheology, syringe geometry and phase separation."--Résumé abrégé par UMI
13

Novel strontium fortified calcium salt for enhancing bone formation: an in vitro and in vivo large animal modelstudy

Li, Zhaoyang, 李朝陽 January 2007 (has links)
published_or_final_version / abstract / Orthopaedics and Traumatology / Doctoral / Doctor of Philosophy
14

Effects of calcium phosphate lozenges on enamel lesions: an in vitro study

吳婉慧, Ng, Yuen-wai. January 2004 (has links)
published_or_final_version / Dentistry / Master / Master of Dental Surgery
15

The calcium phosphate system in saliva-like media

梁永鏗, Leung, Wing-hang, Vitus. January 1989 (has links)
published_or_final_version / abstract / toc / Dentistry / Doctoral / Doctor of Philosophy
16

Processing and properties of bioactive bioresorbable polymer-calcium phosphate composites for orthopaedic applications

Wilberforce, Samuel Isaac Jojo January 2012 (has links)
No description available.
17

The Development and Characterization of a Primarily Mineral Calcium Phosphate - Poly(ε-caprolactone) Biocomposite

DUNKLEY, IAN 24 November 2009 (has links)
Orthopaedic reconstruction often involves the surgical introduction of structural implants that provide for rigid fixation, skeletal stabilization, and bone integration. The high stresses incurred by these implanted devices have historically limited material choices to metallic and select polymeric formulations. While mechanical requirements are achieved, these non-degradable materials do not participate actively in the remodeling of the skeleton and present the possibility of long-term failure or rejection. This is particularly relevant in cervical fusion, an orthopaedic procedure to treat damaged, degenerative or diseased intervertebral discs. A significant improvement on the available synthetic bone replacement/regeneration options for implants to treat these conditions in the cervical spine may be achieved with the development of primarily mineral biocomposites comprised of a bioactive ceramic matrix reinforced with a biodegradable polymer. Such a biocomposite may be engineered to possess the clinically required mechanical properties of a particular application, while maintaining the ability to be remodeled completely by the body. A biocomposite of Si-doped calcium phosphate (Si-CaP) and poly(ε-caprolactone) (PCL) was developed for application as such a synthetic bone material for potential use as a fusion device in the cervical spine. In this thesis, a method by which high mineral content Si-CaP/PCL biocomposites with interpenetrating matrices of mineral and polymer phases may be prepared will be demonstrated, in addition to the effects of the various preparation parameters on the biocomposite density, porosity and mechanical properties. This new technique by which dense, primarily ceramic Si-CaP/PCL biocomposites were prepared, allowed for the incorporation of mineral contents ranging between 45-97vol%. Polymer infiltration, accomplished solely by passive capillary uptake over several days, was found to be capable of fully infiltrating the microporosity of the sintered calcium phosphate ceramic. After infiltration, these biocomposite materials demonstrated an increase in compressive strength, flexural strength and Young’s modulus with increasing ceramic content and met design targets for use as a cervical fusion prosthesis. The biocomposite was amenable to shaping and drilling and was found to maintain its strength after 30 days immersion in Earle’s Balanced Salt. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2009-11-24 16:18:16.461
18

Preparation and characterization of chitosan/calcium phosphate based composite biomaterials/Oktay Yıldırım;thesis advisor Muhsin Çiftçioğlu.

Yıldırım, Oktay. Çiftçioğlu, Muhsin January 2004 (has links) (PDF)
Thesis (Master)--İzmir Institute of Technology, İzmir, 2004 / Includes bibliographical references (leaves. 94).
19

Development of a polymer/ceramic composite scaffold for bone tissue engineering /

Khan, Yusuf M. Laurencin, Cato T. January 2005 (has links)
Thesis (Ph. D.)--Drexel University, 2005. / Includes abstract and vita. Includes bibliographical references (leaves 216-221).
20

The preparation and properties of mono-, di-, and tricalcium phosphates [Part I.] Part II. The comparative fertilizer values of mono-, di-, and tricalcium phosphates /

Larson, H. W. E. January 1934 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1934. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.

Page generated in 0.051 seconds