• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of levosimendan on the contractility of muscle fibers from nemaline myopathy patients with mutations in the nebulin gene

de Winter, J. M., Joureau, B., Sequeira, V., Clarke, N. F., van der Velden, J., Stienen, G. J., Granzier, H., Beggs, A. H., Ottenheijm, C. A. January 2015 (has links)
BACKGROUND: Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is characterized by generalized skeletal muscle weakness, often from birth. To date, no therapy exists that enhances the contractile strength of muscles of NM patients. Mutations in NEB, encoding the giant protein nebulin, are the most common cause of NM. The pathophysiology of muscle weakness in NM patients with NEB mutations (NEB-NM) includes a lower calcium-sensitivity of force generation. We propose that the lower calcium-sensitivity of force generation in NEB-NM offers a therapeutic target. Levosimendan is a calcium sensitizer that is approved for use in humans and has been developed to target cardiac muscle fibers. It exerts its effect through binding to slow skeletal/cardiac troponin C. As slow skeletal/cardiac troponin C is also the dominant troponin C isoform in slow-twitch skeletal muscle fibers, we hypothesized that levosimendan improves slow-twitch muscle fiber strength at submaximal levels of activation in patients with NEB-NM. METHODS: To test whether levosimendan affects force production, permeabilized slow-twitch muscle fibers isolated from biopsies of NEB-NM patients and controls were exposed to levosimendan and the force response was measured. RESULTS: No effect of levosimendan on muscle fiber force in NEB-NM and control skeletal muscle fibers was found, both at a submaximal calcium level using incremental levosimendan concentrations, and at incremental calcium concentrations in the presence of levosimendan. In contrast, levosimendan did significantly increase the calcium-sensitivity of force in human single cardiomyocytes. Protein analysis confirmed that the slow skeletal/cardiac troponin C isoform was present in the skeletal muscle fibers tested. CONCLUSIONS: These findings indicate that levosimendan does not improve the contractility in human skeletal muscle fibers, and do not provide rationale for using levosimendan as a therapeutic to restore muscle weakness in NEB-NM patients. We stress the importance of searching for compounds that improve the calcium-sensitivity of force generation of slow-twitch muscle fibers. Such compounds provide an appealing approach to restore muscle force in patients with NEB-NM, and also in patients with other neuromuscular disorders.
2

A Cellular and Molecular Investigation of Dilated Cardiomyopathy (DCM) in Dogs

Sinclair, Elizabeth 11 January 2013 (has links)
We hypothesized that alterations in cardiac myofilaments are associated with hereditary canine DCM. DCM myofilaments demonstrated a reduction in EC50 and a modest decrease in maximum activity compared to non-failing dog samples. Treatment of myofilaments with the calcium sensitizer, bepridil, showed a reduction in EC50. Desmin and tropomyosin phosphorylation was increased in DCM. Desmin protein levels were increased in DCM. Total troponin I phosphorylation was unchanged, but S23/S24 phosphorylation was reduced in DCM. Myofilament-associated PKC-δ and -ζ were elevated in DCM, PKC- ε was modestly reduced, and PKC-α showed no change. These data are the first investigation of cardiac myofilaments in naturally occurring canine DCM, and support the hypothesis that alterations in cardiac myofilaments are associated with DCM. / OVC Pet Trust (operating funds)

Page generated in 0.0572 seconds