Spelling suggestions: "subject:"calmodulin."" "subject:"kalmodulin.""
41 |
Human erythrocyte membrane associated (Ca +Mg )-ATPase activator protein陳本力, Chan, Boon-lak. January 1984 (has links)
published_or_final_version / Biochemistry / Master / Master of Philosophy
|
42 |
Protein Folding and Dynamics of Calmodulin via 19F-NMRThach, William 27 November 2012 (has links)
Calmodulin (CaM) is a ubiquitous calcium sensor protein which binds and activates a variety of enzymes involved in cell signaling pathways. In its calcium loaded state, CaM is extremely resistant to heat denaturation, with a melting temperature (Tm) of around 115°C. In this study, Xenopus laevis CaM was prepared such that the eight phenylalanine residues were substituted with 3-fluorophenylalanine. 19F NMR studies then focused on properties of the hydrophobic core associated with the folding process at temperatures near the regime where the protein is completely folded. Near 70°C, near-UV circular dichroism and 1H NMR-based measurements of protein diffusion rates reveal the onset of a stable, expanded near-native folding intermediate. 19F NMR solvent isotope shifts reveal a gradual loss of water from the hydrophobic core with increasing temperature, until the point at which the near-native intermediate state is attained. At this point, water is observed to enter the hydrophobic core and destabilize the protein. Paramagnetic shifts from dissolved oxygen reveal an increase in oxygen accessibility with temperature until the near-native intermediate is reached, whereupon oxygen solubility decreases. Taken together, we conclude that hydrophobicity of the protein interior increases with temperature, until a dry near-native state is established, whereupon water cooperatively enters and destabilizes the hydrophobic core. 19F CPMG experiments provide a measure of the interconversion between the folded state and the dry near-native intermediate; at higher temperatures, folding rates are on the order of 10,000 Hz. Moreover, as temperature is lowered, folding rates increase, presumably because the effect of off-pathway misfolding events on the exchange process is diminished.
|
43 |
Protein Folding and Dynamics of Calmodulin via 19F-NMRThach, William 27 November 2012 (has links)
Calmodulin (CaM) is a ubiquitous calcium sensor protein which binds and activates a variety of enzymes involved in cell signaling pathways. In its calcium loaded state, CaM is extremely resistant to heat denaturation, with a melting temperature (Tm) of around 115°C. In this study, Xenopus laevis CaM was prepared such that the eight phenylalanine residues were substituted with 3-fluorophenylalanine. 19F NMR studies then focused on properties of the hydrophobic core associated with the folding process at temperatures near the regime where the protein is completely folded. Near 70°C, near-UV circular dichroism and 1H NMR-based measurements of protein diffusion rates reveal the onset of a stable, expanded near-native folding intermediate. 19F NMR solvent isotope shifts reveal a gradual loss of water from the hydrophobic core with increasing temperature, until the point at which the near-native intermediate state is attained. At this point, water is observed to enter the hydrophobic core and destabilize the protein. Paramagnetic shifts from dissolved oxygen reveal an increase in oxygen accessibility with temperature until the near-native intermediate is reached, whereupon oxygen solubility decreases. Taken together, we conclude that hydrophobicity of the protein interior increases with temperature, until a dry near-native state is established, whereupon water cooperatively enters and destabilizes the hydrophobic core. 19F CPMG experiments provide a measure of the interconversion between the folded state and the dry near-native intermediate; at higher temperatures, folding rates are on the order of 10,000 Hz. Moreover, as temperature is lowered, folding rates increase, presumably because the effect of off-pathway misfolding events on the exchange process is diminished.
|
44 |
Investigating the Folding Network of Calmodulin Using Fluorine NMRHoang, Joshua Nam 26 November 2013 (has links)
Protein folding pathways can be extraordinarily complex. In this study, circular dichroism (CD) and 19F NMR are used to investigate the folding network of calmodulin, a calcium-binding protein, which is biosynthetically enriched with 3-fluorophenylalanine. In calmodulin’s calcium-loaded state, CD experiments identify the existence of a folding intermediate along a heat-denaturation pathway. In comparison to the native state, 19F NMR solvent isotope shifts reveal decreased accessibility of water to hydrophobic core, whereas O2 paramagnetic shifts show increased hydrophobicity of this folding intermediate. 15N-1H and methyl 13C-1H HSQC NMR spectra demonstrate that this folding intermediate retains a near-native tertiary structure, whose hydrophobic interior is highly dynamic. 19F NMR CPMG relaxation dispersion measurements suggest that this near-native intermediate state is transiently adopted below the temperature associated with its onset. The folding network also involves an unproductive off-pathway intermediate. In contrast, calmodulin’s calcium-free state exhibits a simpler folding process which lacks discernible intermediates.
|
45 |
Investigating the Folding Network of Calmodulin Using Fluorine NMRHoang, Joshua Nam 26 November 2013 (has links)
Protein folding pathways can be extraordinarily complex. In this study, circular dichroism (CD) and 19F NMR are used to investigate the folding network of calmodulin, a calcium-binding protein, which is biosynthetically enriched with 3-fluorophenylalanine. In calmodulin’s calcium-loaded state, CD experiments identify the existence of a folding intermediate along a heat-denaturation pathway. In comparison to the native state, 19F NMR solvent isotope shifts reveal decreased accessibility of water to hydrophobic core, whereas O2 paramagnetic shifts show increased hydrophobicity of this folding intermediate. 15N-1H and methyl 13C-1H HSQC NMR spectra demonstrate that this folding intermediate retains a near-native tertiary structure, whose hydrophobic interior is highly dynamic. 19F NMR CPMG relaxation dispersion measurements suggest that this near-native intermediate state is transiently adopted below the temperature associated with its onset. The folding network also involves an unproductive off-pathway intermediate. In contrast, calmodulin’s calcium-free state exhibits a simpler folding process which lacks discernible intermediates.
|
46 |
Molecular cloning and characterization of a tobacco calmodulin binding proteinDash, Sagarika January 1996 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 1996. / Includes bibliographical references (leaves 103-117). / Microfiche. / xiv, 117 leaves, bound ill. 29 cm
|
47 |
Regulation of activation of NF-κB by Calmodulin in T-lymphocytesOruganti, Sreenivasa Rao January 2011 (has links)
Nuclear factor kappa B (NF-kB) is a widely expressed family of transcription factors that are involved in a diverse number of processes. These include inflammation or differentiation, survival or apoptosis, and proliferation or cell cycle arrest. NF-kB is usually associated with inhibitory kB proteins (IkB), which mask the nuclear localisation sequence (NLS) of NF-kB and renders it in the cytoplasm. Various stimuli result in the activation of the I kappa B kinase (IKK) protein complex, which phosphorylates IκB proteins and thereby marks them for degradation by the ubiquitin-proteasome pathway. Thereby NF-kB enters the nucleus and acts on its target genes. The study of T- and B-lymphocyte antigen receptor signalling to NF-kB is a field of intense investigation, with much attention being focused on the molecular scaffolding proteins Carma1, Bcl10 and MALT1 and their post-translational modifications. These have been shown to be crucial for the organization of the immunological synapse structure under the activated receptor, to which IKK is recruited and becomes activated, which subsequently leads to the activation of NF-kB. T cell receptor (TCR) activation results in a rapid increase in the intracellular Ca2+ level and NF-kB activation is known to be regulated by those increases, but the mechanisms have remained unclear. Calmodulin (CaM) is a calcium sensory protein that responds to increases in intracellular Ca2+ levels. When CaM binds Ca2+ ions, it leads to structural changes that directly as well as indirectly, through CaM dependent kinases (CaMKs), phosphatases and other enzymes, alters a variety of cellular processes, among them transcriptional regulation. Here CaM is shown to interact directly with Bcl10 in a Ca2+ dependent manner. Increases in the intracellular Ca2+ level are shown to induce the proximity of Bcl10 and CaM in vivo. Carma1 associates with Bcl10 through a CARD-CARD domain interaction that is known to be crucial for TCR signalling to NF-kB. The interaction of CaM with Bcl10 was mapped to the CARD domain and was shown to be a negative regulator for the Bcl10-Carma1 interaction. Inhibition of the CaM interaction by a point mutation within the CaM binding site of Bcl10 results in decreased binding of CaM to Bcl10 in vivo, as well as an increased ability of Bcl10 to induce NF-kB transcriptional activity, which is further enhanced by TCR activating stimuli. NF-kB activation is also shown here to be regulated by CaM indirectly through actions of CaMKII. The CaMKII is recruited to the immunological synapse where it interacts with Bcl10 in an inducible fashion and phosphorylates Bcl10. Phosphorylations of Bcl10 by CaMKII are shown to be important for the ability of Bcl10 to induce NF-κB transcriptional activity. Upon mutation of its most important CaMKII site, Bcl10 fails to activate an NF-kB reporter and an NF-kB target gene (IL-2). This mutated Bcl10 also fails to induce activating phosphorylations of IKKa/b and the kinase JNK2 but not JNK1. Furthermore, phosphorylation of Bcl10 by CaMKII regulates the interactions within the important Carma1, Bcl10, Malt1 signaling complex and the essential signal induced ubiquitinations of Bcl10 and IKKg. Phosphorylation of IKK by TAK1 is also regulated by CaMKII, and serine 82 is a putative CaMKII target site of TAK1 that appears to be important for IκBα degradation. In summary, this thesis explores that not only NF-kB but also CaM is a double-edged sword, since the multi-functional NF-kB family of transcription factors is regulated by CaM both negatively and positively.
|
48 |
Role of MAP kinase pathways in maintenance of the transformed phenotype /Ljungdahl, Sofia, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 7 uppsatser.
|
49 |
Calmodulin interactions with peptides, hormones, drugs and metal ionsOuyang, Hui, January 1900 (has links) (PDF)
Thesis (Ph.D.)--University of Calgary, 2000. / Includes bibliographical references.
|
50 |
Regulation of NMDA-type glutamate receptors and MDR1 by two members of the EF-hand protein family /Bajaj, Gaurav. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references. Also available on the World Wide Web.
|
Page generated in 0.0637 seconds