• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Meter-scale Horizontal Cryogenic Pulsating Heat Pipes / Étude des caloducs cryogéniques pulsés diphasiques d'un mètre de longueur

Barba Higueras, María Asunción 18 September 2019 (has links)
Un caloduc pulsé diphasique est un lien thermique composé d'un tube capillaire lisse sous forme de serpentin reliant un évaporateur à un condenseur, séparés par une partie adiabatique. Les conditions de température et de pression du fluide à l'intérieur du caloduc sont proches des conditions de changement de phase. De ce fait, et grâce aux dimensions capillaires du tube, le fluide se distribue en différentes parties liquide et vapeur distribuées de manière alternée. Les instabilités thermo-hydrauliques permanentes sont à l'origine d'un écoulement oscillant qui permet le transfert de chaleur de l'évaporateur jusqu'au condenseur.L'objectif du présent projet de recherche consiste à étudier le comportement thermo-hydraulique de trois caloducs cryogéniques pulsés diphasiques testés avec différents fluides cryogéniques (azote, néon et argon) pour le refroidissement d'aimants à haute température critique. De plus, un code numérique a été développé pour les futures simulations 2D des caloducs pulsés diphasiques.Au cours de ce projet de recherche, de nombreux tests expérimentaux ont été réalisés avec trois fluides cryogéniques différents: azote, néon et argon. Les résultats expérimentaux des tests avec une augmentation de puissance progressive dans l'évaporateur ont révélé des capacités de transfert thermiques très différentes en fonction du fluide, chaque fluide présentant un comportement thermo-hydraulique différent. L'état thermodynamique du fluide lors du fonctionnement stable du PHP et la phase d'assèchement (dry-out) ont été étudiés. Les différences dans le comportement des différents fluides ont été expliquées après l'analyse de leurs propriétés physiques. De plus, les taux de remplissage de fluide dans le PHP donnant les meilleures performances thermiques ont été définis. Ajouté à cela, de nombreux tests réalisés en configuration ouverte (avec le PHP connecté au volume tampon) et en configuration fermé (avec le PHP isolé du volume tampon) ont permis de conclure sur la capacité de régulation du volume tampon en cas de surpression dans le PHP. Aussi, les résultats expérimentaux des longs tests de stabilité ont permis de vérifier la stabilité du système PHP pendant des longues périodes de fonctionnement. Par ailleurs, des tests spécifiques ont été réalisés pour déterminer des conditions optimales de démarrage, l'influence de la température du condenseur dans les performances thermiques du système et l'influence du nombre de tubes en parallèle dans la capacité de transfert thermique du système. Finalement, une série de tests avec une forte puissance thermique imposée au niveau de l'évaporateur imitant une situation de quench dans un aimant supraconducteur ont données des précieuses informations sur les limites thermiques du système. Concernant les simulations numériques, un modèle a été développé avec le solveur Fluent pour des simulations dans une géométrie 2D axisymétrique en utilisant la méthode VOF. La dynamique du fluide dans un tube capillaire a été modélisée et les simulations thermiques ont permis de conclure que les instabilités thermodynamiques restent insuffisantes pour maintenir les oscillations du fluide. Ce modèle est présenté comme une nouvelle plateforme pour de futures modélisations 2D des caloducs pulsés diphasiques. / A pulsating (or oscillating) heat pipe (PHP or OHP) is a heat transfer device composed of a single capillary tube bent in many U-turns, connecting an evaporator to a condenser, separated by an adiabatic part. In the PHP, temperature and pressure conditions of the working fluid are close to phase-change conditions. Due to this and to the capillary dimensions of the tube, the fluid is distributed in alternating liquid slugs and vapor plugs. Permanent thermal instabilities in the PHP create the oscillating flow which allows the transfer of heat from one end (the evaporator) to the other (the condenser).The objective of the present work consists in characterizing the thermo-hydraulic behavior of the meter-scale horizontal cryogenic pulsating heat pipes as a cooling solution for space superconducting magnets. To this, several experiments have been conducted in a cryogenic facility containing three different horizontal pulsating heat pipes. In addition, a numerical 2D model has been proposed for future horizontal pulsating heat pipes simulations.During the research project, numerous tests have been performed using three different working fluids: nitrogen, neon and argon. From experimental results of progressive heat load tests it has been possible to compare the maximum heat load transfer capacity of the PHP with each fluid and the corresponding thermal performance. It has also been noticed that each fluid presents a specific behavior concerning the fluid oscillations. In addition, the thermodynamic state of the fluid in operating conditions and the dry-out process have been characterized. Differences between fluid's behaviors have been partly explained by analyzing the evolution of the fluid physical properties related to the movement and the heat transfer capacity. Furthermore, it has been possible to conclude about the relation between the liquid filling ratio in the PHP and its thermal performance, determining the filling ratios giving the highest thermal performances. Moreover, similar tests have been performed in open configuration (with the PHP connected to the buffer volume) and closed configuration (with the PHP isolated from the buffer volume). From this, it has been possible to conclude about the regulation made by the buffer volume in case of overpressure in the PHP. Also, experimental results from long stability tests have confirmed that these pulsating heat pipe are able to work in stable conditions during long periods as a reliable cooling system. In addition to that, specific tests have been done to determine the optimum start-tup conditions, the influence of the temperature of the condenser in the thermal performance and the influence of the number of turns in the global heat transfer capacity. A final series of tests have been achieved with a sudden extra heat load at the surface of the evaporator while the PHP is operating in stable conditions, simulating a quench event of a superconducting magnet. Experimental results gave us precious information about the transient thermal behavior and operating limits of this kind of device during transient heat loads like quench situations. Concerning the numerical part, a numerical model has been proposed for transient simulations with a pressure-based Fluent solver using the Volume of Fluid (VOF) method in a 2D axisymmetric geometry. Certain characteristics of fluid dynamics in capillary tubes have been confirmed. It has also been noticed that thermodynamic instabilities are not enough to generate the fluid oscillations in capillary tubes. Even if the 2D axisymmetric simulation is still at its early stages, several aspects of the models have been validated after analyzing the evolution of different parameters, suggesting that this kind of model can be considered as a new platform for future 2D pulsating heat pipes simulations.

Page generated in 0.0517 seconds