• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

3D Reconstruction in Scanning Electron Microscope : from image acquisition to dense point cloud / Reconstruction 3D dans le microscope électronique à balayage non-calibre

Kudryavtsev, Andrey 31 October 2017 (has links)
L’objectif de ce travail est d’obtenir un modèle 3D d’un objet à partir d’une série d’images prisesavec un Microscope Electronique à Balayage (MEB). Pour cela, nous utilisons la technique dereconstruction 3D qui est une application bien connue du domaine de vision par ordinateur.Cependant, en raison des spécificités de la formation d’images dans le MEB et dans la microscopieen général, les techniques existantes ne peuvent pas être appliquées aux images MEB. Lesprincipales raisons à cela sont la projection parallèle et les problèmes d’étalonnage de MEB entant que caméra. Ainsi, dans ce travail, nous avons développé un nouvel algorithme permettant deréaliser une reconstruction 3D dans le MEB tout en prenant en compte ces difficultés. De plus,comme la reconstruction est obtenue par auto-étalonnage de la caméra, l’utilisation des mires n’estplus requise. La sortie finale des techniques présentées est un nuage de points dense, pouvant donccontenir des millions de points, correspondant à la surface de l’objet. / The goal of this work is to obtain a 3D model of an object from its multiple views acquired withScanning Electron Microscope (SEM). For this, the technique of 3D reconstruction is used which isa well known application of computer vision. However, due to the specificities of image formation inSEM, and in microscale in general, the existing techniques are not applicable to the SEM images. Themain reasons for that are the parallel projection and the problems of SEM calibration as a camera.As a result, in this work we developed a new algorithm allowing to achieve 3D reconstruction in SEMwhile taking into account these issues. Moreover, as the reconstruction is obtained through cameraautocalibration, there is no need in calibration object. The final output of the presented techniques isa dense point cloud corresponding to the surface of the object that may contain millions of points.
2

Perception visuelle pour les drones légers

Skowronski, Robin 03 November 2011 (has links)
Dans cette thèse, en collaboration avec l'entreprise AéroDRONES, le Laboratoire Bordelais de Recherche en Informatique et l'INRIA, nous abordons le problème de la perception de l'environnement à partir d'une caméra embarquée sur un drone léger. Nous avons conçu, développé et validé de nouvelles méthodes de traitement qui optimisent l'exploitation des données produites par des systèmes de prise de vue aéroportés bas coût. D'une part, nous présentons une méthode d'autocalibrage de la caméra et de la tourelle d'orientation, sans condition spécifique sur l'environnement observé. Ensuite nous proposons un nouvel algorithme pour extraire la rotation de la caméra calibrée entre deux images (gyroscope visuel) et l'appliquons à la stabilisation vidéo en temps réel. D'autre part, nous proposons une méthode de géoréférencement des images par fusion avec un fond cartographique existant. Cette méthode permet d'enrichir des bases de données de photos aériennes, en gérant les cas de non-planéité du terrain. / The last decade has seen the emergence of many Unmanned Aerial Vehicles (UAV) which are becoming increasingly cheap and miniaturized. A mounted video-camera is standard equipment and can be found on any such UAVs. In this context, we present robust techniques to enhance autonomy levels of airborne vision systems based on mini-UAV technologies. First, we present a camera autocalibration method based on central projection based image \dimension{2}-invariants analysis and we compare it to classical Dual Image of the Absolute Conic (DIAC) technique. We present also a method to detect and calibrate turret's effectors hierarchy. Then, we propose a new algorithm to extract a calibrated camera self-rotation (visual gyroscope) and we apply it to propose a real-time video stabilizer with full perspective correction.

Page generated in 0.1082 seconds