• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bifurcações de campos vetoriais em duas zonas com simetria / Bifurcations of vector fields in two zones with symmetry

Castro, Ubirajara José Gama de 28 November 2017 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2017-12-27T14:12:36Z No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-12-28T09:43:26Z (GMT) No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-12-28T09:43:26Z (GMT). No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-11-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit. / Neste trabalho, estudamos campos vetoriais em duas zonas reversíveis e campos vetoriais em duas zonas equivariantes. Nosso resultado principal é a classificação das singularidades simétricas de codimensões 0, 1 e 2 de tais campos vetoriais. Mais precisamente, no caso reversível em R3, onde a dimensão da variedade de pontos fixos da involução associada ao campo vetorial é 2, apresentamos todos os diagramas de bifurcação das singularidades de codimensão 1 e 2, descrevendo as mudanças no comportamento das singularidades simétricas e das tangências do campo vetorial com a variedade de transição S, de acordo com a variação do parâmetro de bifurcação. Mostramos também a existência de cilindros invariantes e, nesse caso, fazendo pequenas perturbações determinamos variedades invariantes que persistiram e determinamos o número de ciclos limites que surgiram. Quando o campo vetorial definido em duas zonas é equivariante, a dinâmica é enriquecida com o surgimento do campo vetorial deslizante e também fazemos um estudo local e a classificação das singularidades (e pseudossingularidades) de codimensões 0, 1 e 2. Mostramos a existência de órbitas homoclínicas deslizantes e que esse é um fenômeno de codimensão 1 e devido à simetria do campo vetorial equivariante, teremos um duplo Shilnikov deslizante.

Page generated in 0.484 seconds