• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 6
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A study of proteinases of invasive cells using cryoultramicrotomy and immunogold labelling.

Elliott, Edith. January 1993 (has links)
This study forms part of an investigation into the possible relevance of the lysosomal proteinases, cathepsins B, H, Land D, in cancer cell invasion. In this study, the main technique adopted was the Tokuyasu "cryo" method, in which the tissues were fixed, frozen and sectioned and labelled using the relevant antibodies, which were detected with protein A gold probes. In order to implement the Tokuyasu technique, it was necessary to rebuild a knife maker, for the production of adequately sharp glass knives, and to modify a sputter-coater into a glow-discharger, for rendering carbon-coated grids hydrophilic, to promote adhesion of hydrated sections. This study was directed towards human tissues and peptide antibodies were investigated as a means of avoiding isolation of proteins from scarce human tissue, and as a means of obtaining antibodies that will target specific regions of proteins of interest. Peptide antibodies were also considered promising for studies of proteinase trafficking and as immunoinhibiting agents, potentially useful in cancer therapy. Various prediction programmes were investigated for their effectiveness in predicting whether a given peptide sequence will elicit antibodies that will react with the native protein. Successful prediction would increase the success rate of peptide antibody production and thus lower the cost. Leucocytes were studied as a model of an invasive cell, since they are more readily available than tumour cells and serve the purpose during the development of methods. In the course of these studies, an optimal protocol for the fixation of PMNs was developed, involving lateral fixation of cut sections, that should be useful for future studies on these cells. Elastase and cathepsins D and G were found on the surface of activated PMNs and could thus play a role in the invasive properties of these cells. Studies on MCF-10A "normal" breast epithelial cells and their ras-transformed Neo-T counterparts revealed that upon transformation, lysosomes shift from a perinuclear position, to a more peripheral position. None of the cathepsins studied was found on the cell surface of either the normal or ras-transfected cells, suggesting that surface distribution of these enzymes may not be a requirement for invasiveness. These studies suggest that immunocytochemical investigation of cells, in the process of invading through a barrier membrane, might be profitable in elucidating the role of proteinases in invasive cancer. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1993.
22

Carabin Is a Negative Regulator of Cd8+ T-cell-mediated Anti-tumor Immunity

Cohen, Adrienne January 2022 (has links)
The immune system plays a critical role in the prevention and eradication of cancerous lesions. Indeed, cancer immunology is a rapidly growing area of study that has already generated several FDA-approved treatments and cellular therapies to address mechanisms by which various cancers evade immune clearance. Recent studies look to expand the clinical use of these current therapies and to identify novel targets for future treatments in order to meet the unmet medical needs of the cancer patient population. Recently, multiple correlative studies have identified Carabin (Tbc1d10c) as a potential biomarker for cancer prognosis, including head and neck squamous cell carcinoma (HNSCC), breast cancer, and melanoma. Two mechanistic studies have shown that Carabin acts as a negative feedback inhibitor of canonical TCR and BCR signaling during lymphocyte activation. One group demonstrated that Carabin inhibits CD4+ T-cell activation by binding to and inhibiting the actions of Ras and calcineurin, leading to decreased NFAT and AP-1 transcriptional activity. The second group corroborated the impact of Carabin signaling on the Ras/MAPK pathway in B cells and implicated a role for Carabin in autoimmune diseases in both mice and humans. Collectively, these studies suggest Carabin’s potential role in chronic inflammation and as a pro-tumorigenic target in human cancers. The data presented in Chapters 2-3 demonstrate an immunosuppressive role for Carabin in tumorigenesis. Using three murine tumor models, we identified a novel cancer phenotype in immune competent germline Carabin-ablated (Carabin-/-) mice: these mice showed a twofold decrease in tumor growth and an increase in tumor-free survival compared to wild-type (Carabin+/+) mice. Further assessment identified Carabin expression localized to cells of the immune lineage within the tumor microenvironment (TME), and tumor immunophenotyping showed a twofold increase in the percent of Carabin-/- total and activated CD8+ T cells infiltrating the tumors. Carabin-/- CD8+ T cells displayed an increase in TCR activation and tumor cell killing with no impact on proliferation or migration, indicating that the identified tumor outcome phenotype is due to a suppressive action on the CD8+ TCR activation pathway. Adoptive transfer of tumor antigen-restricted CD8+ T cells into immune-deficient Rag2-/- mice led to reduction of tumor growth in mice receiving Carabin-/- CD8+ T cells. Thus, the data in Chapters 2-3 demonstrate that Carabin deficiency confers tumor resistance via increased CD8+ T-cell anti-tumor activity. This anti-tumor activity is due to an increase in basal NF-κB activity specifically within CD8+ T cells. NF-κB perturbation is the result of a twofold increase in MEKK3 (Map3k3) protein and its downstream phosphorylation of the IKK complex to activate canonical NF-κB. MEKK3 knockdown by siRNA rescued the Carabin-/- in vitro molecular and cellular phenotype without impacting Carabin+/+ CD8+ T cells, and therefore supports the assertion that Carabin signaling is mediated by downstream MEKK3 activity. The NF-κB pathway is critical for T-cell activation and effector function. NF-κB perturbation was selective to CD8+ T cells and not found in CD4+ T cells. Thus, Carabin may be a novel target to mediate NF-κB signaling specifically in CD8+ T cells to improve their effector function within the TME without simultaneously impacting NF-κB in neoplastic or immunosuppressive cells. This is the first study to identify a causative link between Carabin and solid tumor malignancies, to demonstrate a unique mechanism for Carabin in the CD8+ T-cell response to tumorigenesis, and to suggest Carabin as a novel CD8+ T-cell-specific NF-κB inhibitor.

Page generated in 0.1081 seconds