Spelling suggestions: "subject:"cancer drug discovery"" "subject:"cancer drug viscovery""
1 |
Development of a 3D Tissue Engineered Bone Tumor ModelBurdett, Emily 16 September 2013 (has links)
3D ex vivo tumor models are required which better replicate the microenvironment encountered by tumor cells in vivo. In this study, we applied bone tissue engineering culture techniques to develop an ex vivo 3D bone tumor model. Ewing sarcoma cells were cultured on poly(ε-caprolactone) (PCL) microfiber scaffolds, and cellular growth kinetics, morphology, and infiltration were assessed. Cell/scaffold constructs were then exposed to anticancer drugs for up to 16 days and drug response was compared to 2D controls. Ewing sarcoma cells were capable of attachment and proliferation on PCL scaffolds and dense scaffold infiltration up to 200 micrometers. Constructs could be maintained in culture for up to 32 days, and high density 3D cell growth conferred an increased resistance to anticancer drugs over 2D controls. This 3D tumor model shows potential for use in future studies of bone tumor biology, especially as it pertains to the development of new anticancer drugs.
|
2 |
The changing landscape of cancer drug discovery: a challenge to the medicinal chemist of tomorrowPors, Klaus, Goldberg, F.W., Leamon, C.P., Rigby, A.C., Snyder, S.A., Falconer, Robert A. 11 1900 (has links)
No / Since the development of the first cytotoxic agents, synthetic organic chemistry has advanced
enormously. The synthetic and medicinal chemists of today are at the centre of drug development and
are involved in most, if not all, processes of drug discovery. Recent decreases in government funding and
reformed educational policies could, however, seriously impact on drug discovery initiatives worldwide.
Not only could these changes result in fewer scientific breakthroughs, but they could also negatively
affect the training of our next generation of medicinal chemists.
|
3 |
Changes in endosome-lysosome pH accompanying pre-malignant transformation.Jackson, Jennifer Gouws. January 2005 (has links)
The mechanisms by which altered processing, distribution and secretion of proteolytic
enzymes occur, facilitating degradation of the extracellular matrix in invasive and
metastatic cells, are not fully understood. Studies on the MCF-10 A breast epithelial cell
line and its premalignant, c-Ha-ras-transfected MCF-10AneoT counterpart have shown
that the ras-transfected cell line has a more alkaline pH. The objective of this study was to
determine which organelles of the endosome-lysosome route were alkalinized and shifted
to the cell periphery after ras-transfection. Antibodies to the hapten 2,4-dinitrophenyl
(DNP), required for pH studies, were raised in rabbits and chickens using DNP-ovalbumin
(DNP-OVA) as immunogen. Cationised DNP-OVA (DNP-catOVA) was also inoculated
to increase antibody titres. Anti-hapten and carrier antibody titres were assessed. In
rabbits, cationisation seems useful to increase anti-DNP titres if a non-self carrier protein
(OVA) is used. In chickens, cationisation of DNP-OVA seems necessary to produce a
sustained anti-OVA (anti-self) response (implying a potential strategy for cancer
immunotherapy). Oregon Green® 488 dextran pulse-chase uptake and fluorescent
microscopy, and (2,4-dinitroanilino)-3'-amino-N-methyldipropylamine (DAMP) uptake,
immunolabelling for DNP (a component of DAMP) and unique markers for the early
endosome (early endosome antigen-I, EEAI), the late endosome (cation-independent
mannose-6-phosphate receptor, CI-MPR) and the lysosome (small electron dense
morphology and lysosome-associated membrane protein-2, LAMP-2) and electron
mlcroscopy was performed. The pH of late endosomes and lysosomes in the
ras-transfected MCF-10AneoT cell line were found to be relatively alkalinised and
Iysosomes shifted toward the cell periphery. The acidic pH of late endosomes is required
to release precursor cysteine and aspartic proteases from their receptors (e.g. CI-MPR),
process the precursors to active proteases and to allow receptor recycling. The more
alkaline pH observed potentially explains the altered processing of proteases in rastransfected
cells. Alkalinisation ofthe cytosol may affect the cytoskeleton responsible for,
among other things, the positioning and trafficking of various organelles, causing
relocation of Iysosomes toward the cell periphery and actin depolymerisation. This may
enable fusion of Iysosomes with the plasma membrane and the release of proteolytic
enzymes, facilitating the observed invasive phenotype. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.
|
Page generated in 0.049 seconds