• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interaction of Brain Cancer Stem Cells and the Tumour Microenvironment: A Computational Study

Shahbandi, Nazgol 04 January 2012 (has links)
Glioblastoma multiforme (GBM) is one of the most common and aggressive primary brain tumours, with a median patient survival time of 6-12 months in adults. It has been recently suggested that a typically small sub-population of brain tumour cells, in possession of certain defining properties of stem cells, is responsible for initiating and maintaining the tumour. More recent experiments have studied the interactions between this subpopulation of brain cancer cells and tumour microenvironmental factors such as hypoxia and high acidity. In this thesis a computational approach (based on Gillespie’s algorithm and cellular automata) is proposed to investigate the tumour heterogeneities that develop when exposed to various microenvironmental conditions of the cancerous tissue. The results suggest that microenvironmental conditions highly affect the characterization of cancer cells, including the self-renewal, differentiation and dedifferentiation properties of cancer cells.
2

Interaction of Brain Cancer Stem Cells and the Tumour Microenvironment: A Computational Study

Shahbandi, Nazgol 04 January 2012 (has links)
Glioblastoma multiforme (GBM) is one of the most common and aggressive primary brain tumours, with a median patient survival time of 6-12 months in adults. It has been recently suggested that a typically small sub-population of brain tumour cells, in possession of certain defining properties of stem cells, is responsible for initiating and maintaining the tumour. More recent experiments have studied the interactions between this subpopulation of brain cancer cells and tumour microenvironmental factors such as hypoxia and high acidity. In this thesis a computational approach (based on Gillespie’s algorithm and cellular automata) is proposed to investigate the tumour heterogeneities that develop when exposed to various microenvironmental conditions of the cancerous tissue. The results suggest that microenvironmental conditions highly affect the characterization of cancer cells, including the self-renewal, differentiation and dedifferentiation properties of cancer cells.

Page generated in 0.1104 seconds