• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • Tagged with
  • 23
  • 23
  • 18
  • 17
  • 13
  • 11
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biotransformação do ácido ricinoleico e do ricinoleato de metila na presença das leveduras

Silva, Arleide Rosa da January 2002 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas. Programa de Pós-Graduação em Química. / Made available in DSpace on 2012-10-20T07:17:36Z (GMT). No. of bitstreams: 1 196062.pdf: 1368246 bytes, checksum: 13b6642c2e3a9864ea02a867fa27e9a0 (MD5) / Estudo da capacidade das leveduras Candida oleophila e Candida guilliermondii em biotransformar os substratos ácido ricinoleico e ricinoleato de metila à gamadecalactona. Análise do perfil do comportamento celular e cinético através da determinação da curva de crescimento celular e velocidade máxima específica das leveduras em quatro meios de cultura: YMA (meio fermento-malte-ágar), MBAR (meio de biotransformação com ácido ricinoleico), MSA (meio salino "A") e MSB (meio salino "B"). Monitoramento do pH dos meios utilizados para crescimento celular e biotransformação. Biotransformação nos meios com os substratos ácido ricinoleico e ricinoleato de metila (MBAR e MBRM) para detecção por cromatografia gasosa da presença de gamadecalactona (GDL) utilizando as leveduras Candida oleophila e Candida guilliermondii.
2

Estudo da produção de xilitol a partir de hidrolisado hemicelulósico de palha de arroz empregando células de Candida guilliermondii permeabilizadas com Triton X-100 / Study of xylitol production from hemicellulosic rice straw hydrolyzate using Candida guilliermondii cells permeabilized with Triton X-100

Tiburcio, Mariana André Gonçalves 30 November 2018 (has links)
O presente estudo teve como objetivo avaliar a produção de xilitol a partir de hidrolisado hemicelulósico de palha de arroz empregando células de Candida guilliermondii permeabilizadas com Triton X-100. Para a obtenção do hidrolisado hemicelulósico foram realizadas etapas de pré-tratamento da palha de arroz sob condições previamente otimizadas pelo grupo de pesquisa, incluindo um tratamento alcalino seguido de tratamento com ácido diluído. Inicialmente, foi avaliado o efeito do meio de permeabilização celular (meio semi-definido ou hidrolisado hemicelulósico) sobre a biotransformação de xilose em xilitol empregando hidrolisado hemicelulósico. Numa segunda etapa, foi avaliado o efeito de tampão fosfato de potássio e MgCl2.6H2O sobre o processo de biotransformação empregando hidrolisado não detoxificado e detoxificado com carvão ativado através de um planejamento experimental 22. As condições de biotransformação foram mantidas a 35 °C, pH 6,8, com uma suspensão celular de 10-12 g/L. Neste estudo ficou demonstrado que a biotransformação do hidrolisado empregando células permeabilizadas em meio semi-definido, mostrou uma produtividade volumétrica em xilitol (QP = 1,86 g/L.h) de 34,8 % superior à obtida com células permeabilizadas no próprio hidrolisado (QP = 1,38 g/L.h), enquanto os fatores de conversão de xilose em xilitol foram semelhantes (~0,57 g/g) independente do meio de permeabilização. Foi observado que a adição de tampão fosfato de potássio e/ou MgCl2.6H2O ao hidrolisado hemicelulósico (não detoxificado e detoxificado) não promoveu qualquer efeito sobre a biotransformação de xilose em xilitol, obtendo-se em média uma produtividade volumétrica de 2,0 g/L.h e um fator de conversão de 0,57 g/g. O impacto da permeabilização celular com Triton X-100 sobre a biotransformação de xilose em xilitol empregando hidrolisado hemicelulósico não detoxificado e sem qualquer adição de sais foi de um aumento de 40 % na produtividade volumétrica e de 32 % no fator de conversão de xilose em xilitol. As células permeabilizadas com Triton X-100 também mostraram elevada estabilidade. Os valores de produtividade volumétrica e fator de conversão de xilose em xilitol foram mantidos em 4 ciclos de 15 horas cada em bateladas repetidas, os quais apresentaram em média 1,93 g/L.h e 0,59 g/g, respectivamente. Estes resultados mostram que a permeabilização celular é uma potencial estratégia para a biotransformação de xilose em xilitol a partir de hidrolisado hemicelulósico de palha de arroz, pois além de aumentar os parâmetros da biotransformação, não promoveu queda da viabilidade celular e permitiu o reuso das células. / The present study aimed to evaluate the production of xylitol from hemicellulosic rice straw hydrolyzate using Candida guilliermondii cells permeabilized with Triton X-100. To obtain the hemicellulosic hydrolyzate, pre-treatment steps were performed on rice straw under conditions previously optimized by the research group, including an alkaline treatment followed by diluted acid treatment. Initially, the effect of the cellular permeabilization medium (semi-defined medium or hemicellulosic hydrolyzate) on the biotransformation of xylose in xylitol using a hemicellulosic hydrolyzate was evaluated. In a second step, the effect of potassium phosphate buffer and MgCl2.6H2O on the biotransformation process was evaluated using non-detoxified hydrolyzate and detoxified with activated charcoal through an experimental design 22. The biotransformation conditions were maintained at 35 °C, pH 6,8, with a cell suspension of 10-12 g/L. In this study, it was demonstrated that in the biotransformation of xylitol in xylitol by cells permeabilized in semi-defined medium using hemicellulosic hydrolyzate, the volumetric productivity in xylitol (QP = 1,86 g/L.h) was 34,8% higher than that obtained with cells permeabilized in hydroxylate (QP = 1,38 g/L.h), while xylose conversion factors in xylitol were similar (~ 0,57 g/g) independent of the permeabilization medium. It was observed that the addition of potassium phosphate buffer and / or MgCl2.6H2O to the hemicellulosic (non-detoxified and detoxified) hydrolyzate did not have any effect on the biotransformation of xylitol into xylitol, obtaining, on average, a volumetric productivity of 2,0 g/L.h and a conversion factor of 0,57 g/g. The impact of cell permeabilization with Triton X-100 on xylose biotransformation in xylitol using non-detoxified hemicellulosic hydrolyzate and without any addition of salts was a 40% increase in volumetric productivity and 32% in xylose conversion factor in xylitol. Cells permeabilized with Triton X-100 also showed high stability. The values of volumetric productivity and conversion factor of xylose in xylitol were maintained in 4 cycles of 15 hours each in repeated batch, which presented, on average, 1,93 g/L.h and 0,59 g/g, respectively. These results show that cellular permeabilization is a potential strategy for the biotransformation of xylitol in xylitol from hemicellulosic rice straw hydrolyzate, since in addition to increasing the parameters of biotransformation, it did not promote a decrease in cell viability and allowed reuse of the cells.
3

Avaliação da biomassa de sorgo forrageiro para produção biotecnológica de xilitol / Evaluation of the forage sorghum biomass for biotechnological production of xylitol

Variz, Daniela Inês Loreto Saraiva 25 April 2011 (has links)
O cultivo de sorgo se encontra em grande ascensão no Brasil pelas características favoráveis deste cereal como um excelente substituto do milho na alimentação animal, pelo seu comparável valor nutritivo e melhor adaptação a climas secos. Considerando que o sorgo forrageiro é um tipo de sorgo empregado como cobertura de solo e produção de silagem, a sua característica como material lignocelulósico, sua constituição em açúcares nas suas frações celulósica e hemicelulósica, pesquisas para o seu aproveitamento biotecnológico poderão contribuir para a obtenção de produtos de interesse econômico e social, como o xilitol. A obtenção biotecnológica do xilitol, um álcool pentahidroxilado, comercialmente obtido por catálise química de xilose proveniente de materiais lignocelulósicos é uma opção de aproveitamento desta biomassa. Este produto possui características peculiares como poder adoçante comparável ao da sacarose, anticariogenicidade, indicado para diabéticos e obesos o que permite a sua ampla aplicação em diferentes segmentos industriais. Em função de seu elevado custo de produção por via química, pesquisas vêm sendo extensivamente realizadas na busca de uma tecnologia alternativa para sua obtenção por via biotecnológica. Porém, para a aplicação da biotecnologia para produção de xilitol a partir de biomassas lignocelulósicas é necessário a realização de hidrólise destes materiais para a solubilização dos açúcares constituintes da sua fração hemicelulósica. Esta fração é a de interesse, devido ao seu elevado teor de xilose, substrato para a produção de xilitol. Assim, no presente trabalho foram avaliadas 3 variedades (A, B e C) de biomassa de sorgo forrageiro para produção biotecnológica de xilitol empregando a levedura Candida guilliermondii. Foram realizadas diferentes etapas do processo como a caracterização química das variedades, hidrólise ácida, concentração à vácuo, destoxificação e fermentação dos hidrolisados. A performance fermentativa foi avaliada a partir da determinação dos parâmetros rendimento (YP/S) e produtividade (QP) de xilitol, bem como das atividades das enzimas xilose redutase (XR) e xilitol desidrogenase (XDH). Pela caracterização química das 3 variedades avaliadas constatou-se que não há diferenças relevantes quanto aos teores das frações celulose, hemicelulose e lignina, embora a variedade A tenha se mostrado mais promissora para a produção de xilitol, em função dos máximos parâmetros YP/S e QP obtidos. Neste caso os máximos valores de rendimento e produtividade de xilitol foram respectivamente correspondentes a 0,35 g/g e 0,16 g/L.h-1 para a variedade A, 0,25 g/g e 0,12 g/L.h-1 para a variedade B e 0,17 g/g e 0,063 g/L.h-1 para a variedade C. Consequentemente as máximas atividades enzimáticas para as enzimas XR (0,25 U/mgprot) e XDH (0,17 U/mgprot) ocorreram nas fermentações realizadas com a variedade A, embora não se observou diferenças marcantes em relação às demais variedades. / The culture of sorghum is in great ascension in Brazil due to the favorable characteristics of this cereal as an excellent substitute for the maize in the animal feeding, with comparable nutritional value and the better adaptation for dry climates. Considering forage sorghum as a type of sorghum that is used as covering of the ground and production of ensilage, its characteristics as lignocellulosic material which is constituted of sugars in its cellulosic and hemicellulosic fractions, researches for the biotechnological exploitation of this biomass will contribute for obtainment of economic and social interest products, like xylitol. The obtainment of xylitol, a pentahydroxilic alcohol, commercially obtained by chemical catalysis of xylose proceeding from lignocellulosic materials is an option of exploitation of this biomass. This product has peculiar characteristics like its sweetener power similar to that of saccharose, anticariogenicity, indicated for diabetic and obese people allowing its application in different industrial segments. Due to its raised cost of chemical production, researches have been extensively carried out in order to search a technological alternative for its obtainment by biotechnological way. However, for xylitol production from lignocellulosic biomasses by biotechnological way, the hydrolysis of these materials for the solubilization of the sugars present in its hemicellulosic fractions is necessary. This fraction is of interest, because it has large amount of xylose, substract for the production of xylitol. Then, in the present work 3 varieties (A, B and C) of forage sorghum biomass for biotechnological production of xylitol were evaluated using the Candida guilliermondii yeast. Different stages of the process were carried out: chemical characterization of the varieties, acid hydrolysis, vacuum concentration, detoxification and fermentations of the hydrolysates. The fermentative performance was evaluated from the determination of the xylitol yield (YP/S) and productivity (QP), and from the activities of the enzymes xylose reductase (XR) and xylitol dehydrogenase (XDH). For the chemical characterization of the 3 evaluated varieties, no relevant difference was verified in relation to amounts of the cellulose, hemicellulose and lignin fractions. However the variety A showed to be more promising for the production of xylitol as a function of the obtained YP/S and QP maximum parameters. In this case the maximum values xylitol yield and productivity were respectively 0,35 g/g and 0,16 g/L.h-1 for the variety A, 0,25 g/g and 0,12 g/L.h-1 for the variety B and 0,17 g/g and 0,063 g/L.h-1 for the variety C. Consequently the maximum enzymatic activities for enzymes XR (0,25 U/mgprot) and XDH (0,17 U/mgprot) occurred in the fermentations carried out with the variety A, and no notable difference was observed in relation to the other varieties.
4

Permeabilização de células de Candida guilliermondii empregando processos químicos e físicos e seu potencial uso como biocatalisadores na síntese de xilitol / Permeabilization of Candida guilliermondii cells using chemical and physical processes and their potential use as biocatalysts in the synthesis of xylitol

Cortez, Daniela Vieira 16 April 2010 (has links)
Este trabalho teve como objetivo estudar a permeabilização celular de Candida guilliermondii FTI 20037 empregando processos químicos (agentes tensoativos) e físicos (congelamento-descongelamento) e verificar o potencial uso das células permeabilizadas na redução de xilose em xilitol. Os ensaios de permeabilização empregaram suspensão celular de 2 g/L, temperatura de 30ºC e pH 7. Para os processos químicos foram avaliados CTAB (Brometo de cetiltrimetilamônio) e Triton X-100 e os ensaios foram realizados empregando metodologia do planejamento experimental. O monitoramento da permeabilidade celular foi realizado através da dosagem in situ e no sobrenadante da enzima glicose-6-fosfato desidrogenase (G6PD), selecionada como marcador do tratamento. As enzimas xilose redutase (XR) e xilitol desidrogenase (XD) também foram dosadas. A permeabilização de C. guilliermondii com CTAB permitiu a dosagem in situ de G6PD e XD, mas não de XR. As três enzimas avaliadas não foram detectadas no sobrenadante. As condições que promoveram máxima permeabilidade celular (0,41 mM de CTAB, 200 rpm de agitação e 50 min de tempo de contato) resultaram em níveis in situ de G6PD de 283,4 ± 60,7 U/L e 122,4 ± 15,7 U/gcélulas. Nestas condições de tratamento, o CTAB influenciou negativamente a atividade catalítica de G6PD, XR e XD presentes no homogenato das células rompidas (não tratadas). O estudo de permeabilização celular com Triton X-100 mostrou que o tensoativo foi pouco efetivo, permitindo a dosagem in situ apenas da G6PD. As condições que promoveram máxima permeabilidade celular, ou seja, 2,78 mM de Triton X-100, 200 rpm de agitação e 50 min de tempo de contato, resultaram em níveis in situ de G6PD de 44,7 ± 0,0 U/L e 16,9 ± 0,0 U/gcélulas. Nestas condições, Triton X-100 não afetou a atividade catalítica de G6PD, XR e XD presentes no homogenato das células rompidas (não tratadas). O processo físico de permeabilização consistiu no congelamento da suspensão celular (-18ºC) por período de 48h, seguido do descongelamento em banho-maria (30ºC). Este tratamento permitiu a dosagem in situ das enzimas G6PD (108,7 ± 3,8 U/L e 54,3 ± 1,9 U/ gcélulas) e XR (26,4 ± 0,1U/L e 13,2 ± 0,1 U/gcélulas), mas não da XD. O tratamento não foi suficiente para liberar G6PD, no entanto, cerca de 60% da atividade total de XR foi detectada no sobrenadante (47,1 ± 0,4 U/L e 23,6 ± 0,2 U/gcélulas). Os ensaios de biotransformação mostraram que, nas condições avaliadas, a conversão de xilose em xilitol foi dependente do tipo de tratamento de permeabilização do biocatalisador. Os ensaios de cultivo mostraram que o tratamento das células com Triton X-100 não foi suficiente para causar perda de viabilidade e atividade metabólica de C. guilliermondii, enquanto o congelamento-descongelamento promoveu perda parcial da viabilidade celular. O tratamento das células com CTAB foi mais agressivo, causando a perda total de viabilidade celular. Foi também verificado que resting cells (células em estado de repouso) de C. guilliermondii sem tratamento e permeabilizadas com Triton X-100 foram capazes de converter xilose em xilitol com rendimento de ~60%, após 10 h de reação. Com o presente trabalho pode se concluir que os métodos estudados podem ser especialmente úteis para a determinação in situ de G6PD. Além disto, a utilização de células permeabilizadas pode ajudar a superar os problemas/custos associados com a extração e purificação das enzimas e conseqüentemente contribuírem para o desenvolvimento de uma tecnologia de baixo custo para a produção de xilitol. / This work describes the effect of the surfactants (CTAB and Triton X-100) and freezing-thawing treatment on the permeabilization of C. guilliermondii cells. The potential use of these cells (unpermeabilized and permeabilized by CTAB, Triton X-100 and freezing-thawing treatment) was also evaluated. Response surface methodology was used to investigate the effect of different parameters (detergent concentration, agitation and treatment time) on the permeabilization of C. guilliermondii cells. The experimentation was aimed to find the values of process variables to achieve maximal glucose-6-phosphate dehydrogenase (G6PD) activity in situ. The intracellular G6PD of the C. guilliermondii could not be detected in intact (unpermeabilized) whole cells. However, on treatment of C.guilliermondii with detergents (CTAB and Triton X-100) and freeze-thawing, the G6PD activity could be measured.The effectiveness of detergent permeabilization of C.guilliermondii cells was dependent on its concentration and exposure time. Maximum permeabilization, measured in terms of assayable G6PD activity in situ, was obtained when the cells were treated with CTAB. Triton X-100 and freeze-thawing were also found to permeabilize the cells, but to a lesser degree than CTAB. The optimum operating conditions for permeabilization process were 0.41 mM (CTAB) or 2.78 mM (Triton X-100) under agitation of 200 rpm at 30ºC temperature and process duration of 50 min and pH 7. At these conditions of process variables, the maximum value of enzyme activity was found to be 283.4 ± 60.7 U/L (122.4 ± 15.7 U/gcells) and 44.7 ± 0.0 U/L (16.9 ± 0.0 U/gcells) for permeabilized cells with CTAB and Triton X-100, respectively. The Triton X-100 was not enough to cause loss of viability and metabolic activity of C. guilliermondii. Freezing-thawing treatment promoted partial loss of cell viability. On the other hand the cells treated with CTAB were totally affected. The biotransformation of xylose to xylitol was studied by employing C. gulliermondii FTI 20037 in two different forms namely unpermeabilized cells and permeabilized cells. The maximum xylitol yield of about 60% was observed with unpermeabilized yeast cells and Triton X-100 permeabilized cells after 10 h of reaction time. In conclusion, surfactants and freezing-thawing treatment provides a simple and mild procedure for C.guilliermondii permeabilization. The method may be especially useful for the in situ determination of G6PD. Response surface methodology was found effective in optimizing and determining the interactions among process variables for the permeabilization process. The use of permeabilized cells can help to overcome the problems/costs associated with enzyme extraction and purification from yeast cells and in the development of a low-cost technology for xylitol production.
5

Avaliação da biomassa de sorgo forrageiro para produção biotecnológica de xilitol / Evaluation of the forage sorghum biomass for biotechnological production of xylitol

Daniela Inês Loreto Saraiva Variz 25 April 2011 (has links)
O cultivo de sorgo se encontra em grande ascensão no Brasil pelas características favoráveis deste cereal como um excelente substituto do milho na alimentação animal, pelo seu comparável valor nutritivo e melhor adaptação a climas secos. Considerando que o sorgo forrageiro é um tipo de sorgo empregado como cobertura de solo e produção de silagem, a sua característica como material lignocelulósico, sua constituição em açúcares nas suas frações celulósica e hemicelulósica, pesquisas para o seu aproveitamento biotecnológico poderão contribuir para a obtenção de produtos de interesse econômico e social, como o xilitol. A obtenção biotecnológica do xilitol, um álcool pentahidroxilado, comercialmente obtido por catálise química de xilose proveniente de materiais lignocelulósicos é uma opção de aproveitamento desta biomassa. Este produto possui características peculiares como poder adoçante comparável ao da sacarose, anticariogenicidade, indicado para diabéticos e obesos o que permite a sua ampla aplicação em diferentes segmentos industriais. Em função de seu elevado custo de produção por via química, pesquisas vêm sendo extensivamente realizadas na busca de uma tecnologia alternativa para sua obtenção por via biotecnológica. Porém, para a aplicação da biotecnologia para produção de xilitol a partir de biomassas lignocelulósicas é necessário a realização de hidrólise destes materiais para a solubilização dos açúcares constituintes da sua fração hemicelulósica. Esta fração é a de interesse, devido ao seu elevado teor de xilose, substrato para a produção de xilitol. Assim, no presente trabalho foram avaliadas 3 variedades (A, B e C) de biomassa de sorgo forrageiro para produção biotecnológica de xilitol empregando a levedura Candida guilliermondii. Foram realizadas diferentes etapas do processo como a caracterização química das variedades, hidrólise ácida, concentração à vácuo, destoxificação e fermentação dos hidrolisados. A performance fermentativa foi avaliada a partir da determinação dos parâmetros rendimento (YP/S) e produtividade (QP) de xilitol, bem como das atividades das enzimas xilose redutase (XR) e xilitol desidrogenase (XDH). Pela caracterização química das 3 variedades avaliadas constatou-se que não há diferenças relevantes quanto aos teores das frações celulose, hemicelulose e lignina, embora a variedade A tenha se mostrado mais promissora para a produção de xilitol, em função dos máximos parâmetros YP/S e QP obtidos. Neste caso os máximos valores de rendimento e produtividade de xilitol foram respectivamente correspondentes a 0,35 g/g e 0,16 g/L.h-1 para a variedade A, 0,25 g/g e 0,12 g/L.h-1 para a variedade B e 0,17 g/g e 0,063 g/L.h-1 para a variedade C. Consequentemente as máximas atividades enzimáticas para as enzimas XR (0,25 U/mgprot) e XDH (0,17 U/mgprot) ocorreram nas fermentações realizadas com a variedade A, embora não se observou diferenças marcantes em relação às demais variedades. / The culture of sorghum is in great ascension in Brazil due to the favorable characteristics of this cereal as an excellent substitute for the maize in the animal feeding, with comparable nutritional value and the better adaptation for dry climates. Considering forage sorghum as a type of sorghum that is used as covering of the ground and production of ensilage, its characteristics as lignocellulosic material which is constituted of sugars in its cellulosic and hemicellulosic fractions, researches for the biotechnological exploitation of this biomass will contribute for obtainment of economic and social interest products, like xylitol. The obtainment of xylitol, a pentahydroxilic alcohol, commercially obtained by chemical catalysis of xylose proceeding from lignocellulosic materials is an option of exploitation of this biomass. This product has peculiar characteristics like its sweetener power similar to that of saccharose, anticariogenicity, indicated for diabetic and obese people allowing its application in different industrial segments. Due to its raised cost of chemical production, researches have been extensively carried out in order to search a technological alternative for its obtainment by biotechnological way. However, for xylitol production from lignocellulosic biomasses by biotechnological way, the hydrolysis of these materials for the solubilization of the sugars present in its hemicellulosic fractions is necessary. This fraction is of interest, because it has large amount of xylose, substract for the production of xylitol. Then, in the present work 3 varieties (A, B and C) of forage sorghum biomass for biotechnological production of xylitol were evaluated using the Candida guilliermondii yeast. Different stages of the process were carried out: chemical characterization of the varieties, acid hydrolysis, vacuum concentration, detoxification and fermentations of the hydrolysates. The fermentative performance was evaluated from the determination of the xylitol yield (YP/S) and productivity (QP), and from the activities of the enzymes xylose reductase (XR) and xylitol dehydrogenase (XDH). For the chemical characterization of the 3 evaluated varieties, no relevant difference was verified in relation to amounts of the cellulose, hemicellulose and lignin fractions. However the variety A showed to be more promising for the production of xylitol as a function of the obtained YP/S and QP maximum parameters. In this case the maximum values xylitol yield and productivity were respectively 0,35 g/g and 0,16 g/L.h-1 for the variety A, 0,25 g/g and 0,12 g/L.h-1 for the variety B and 0,17 g/g and 0,063 g/L.h-1 for the variety C. Consequently the maximum enzymatic activities for enzymes XR (0,25 U/mgprot) and XDH (0,17 U/mgprot) occurred in the fermentations carried out with the variety A, and no notable difference was observed in relation to the other varieties.
6

Permeabilização de células de Candida guilliermondii empregando processos químicos e físicos e seu potencial uso como biocatalisadores na síntese de xilitol / Permeabilization of Candida guilliermondii cells using chemical and physical processes and their potential use as biocatalysts in the synthesis of xylitol

Daniela Vieira Cortez 16 April 2010 (has links)
Este trabalho teve como objetivo estudar a permeabilização celular de Candida guilliermondii FTI 20037 empregando processos químicos (agentes tensoativos) e físicos (congelamento-descongelamento) e verificar o potencial uso das células permeabilizadas na redução de xilose em xilitol. Os ensaios de permeabilização empregaram suspensão celular de 2 g/L, temperatura de 30ºC e pH 7. Para os processos químicos foram avaliados CTAB (Brometo de cetiltrimetilamônio) e Triton X-100 e os ensaios foram realizados empregando metodologia do planejamento experimental. O monitoramento da permeabilidade celular foi realizado através da dosagem in situ e no sobrenadante da enzima glicose-6-fosfato desidrogenase (G6PD), selecionada como marcador do tratamento. As enzimas xilose redutase (XR) e xilitol desidrogenase (XD) também foram dosadas. A permeabilização de C. guilliermondii com CTAB permitiu a dosagem in situ de G6PD e XD, mas não de XR. As três enzimas avaliadas não foram detectadas no sobrenadante. As condições que promoveram máxima permeabilidade celular (0,41 mM de CTAB, 200 rpm de agitação e 50 min de tempo de contato) resultaram em níveis in situ de G6PD de 283,4 ± 60,7 U/L e 122,4 ± 15,7 U/gcélulas. Nestas condições de tratamento, o CTAB influenciou negativamente a atividade catalítica de G6PD, XR e XD presentes no homogenato das células rompidas (não tratadas). O estudo de permeabilização celular com Triton X-100 mostrou que o tensoativo foi pouco efetivo, permitindo a dosagem in situ apenas da G6PD. As condições que promoveram máxima permeabilidade celular, ou seja, 2,78 mM de Triton X-100, 200 rpm de agitação e 50 min de tempo de contato, resultaram em níveis in situ de G6PD de 44,7 ± 0,0 U/L e 16,9 ± 0,0 U/gcélulas. Nestas condições, Triton X-100 não afetou a atividade catalítica de G6PD, XR e XD presentes no homogenato das células rompidas (não tratadas). O processo físico de permeabilização consistiu no congelamento da suspensão celular (-18ºC) por período de 48h, seguido do descongelamento em banho-maria (30ºC). Este tratamento permitiu a dosagem in situ das enzimas G6PD (108,7 ± 3,8 U/L e 54,3 ± 1,9 U/ gcélulas) e XR (26,4 ± 0,1U/L e 13,2 ± 0,1 U/gcélulas), mas não da XD. O tratamento não foi suficiente para liberar G6PD, no entanto, cerca de 60% da atividade total de XR foi detectada no sobrenadante (47,1 ± 0,4 U/L e 23,6 ± 0,2 U/gcélulas). Os ensaios de biotransformação mostraram que, nas condições avaliadas, a conversão de xilose em xilitol foi dependente do tipo de tratamento de permeabilização do biocatalisador. Os ensaios de cultivo mostraram que o tratamento das células com Triton X-100 não foi suficiente para causar perda de viabilidade e atividade metabólica de C. guilliermondii, enquanto o congelamento-descongelamento promoveu perda parcial da viabilidade celular. O tratamento das células com CTAB foi mais agressivo, causando a perda total de viabilidade celular. Foi também verificado que resting cells (células em estado de repouso) de C. guilliermondii sem tratamento e permeabilizadas com Triton X-100 foram capazes de converter xilose em xilitol com rendimento de ~60%, após 10 h de reação. Com o presente trabalho pode se concluir que os métodos estudados podem ser especialmente úteis para a determinação in situ de G6PD. Além disto, a utilização de células permeabilizadas pode ajudar a superar os problemas/custos associados com a extração e purificação das enzimas e conseqüentemente contribuírem para o desenvolvimento de uma tecnologia de baixo custo para a produção de xilitol. / This work describes the effect of the surfactants (CTAB and Triton X-100) and freezing-thawing treatment on the permeabilization of C. guilliermondii cells. The potential use of these cells (unpermeabilized and permeabilized by CTAB, Triton X-100 and freezing-thawing treatment) was also evaluated. Response surface methodology was used to investigate the effect of different parameters (detergent concentration, agitation and treatment time) on the permeabilization of C. guilliermondii cells. The experimentation was aimed to find the values of process variables to achieve maximal glucose-6-phosphate dehydrogenase (G6PD) activity in situ. The intracellular G6PD of the C. guilliermondii could not be detected in intact (unpermeabilized) whole cells. However, on treatment of C.guilliermondii with detergents (CTAB and Triton X-100) and freeze-thawing, the G6PD activity could be measured.The effectiveness of detergent permeabilization of C.guilliermondii cells was dependent on its concentration and exposure time. Maximum permeabilization, measured in terms of assayable G6PD activity in situ, was obtained when the cells were treated with CTAB. Triton X-100 and freeze-thawing were also found to permeabilize the cells, but to a lesser degree than CTAB. The optimum operating conditions for permeabilization process were 0.41 mM (CTAB) or 2.78 mM (Triton X-100) under agitation of 200 rpm at 30ºC temperature and process duration of 50 min and pH 7. At these conditions of process variables, the maximum value of enzyme activity was found to be 283.4 ± 60.7 U/L (122.4 ± 15.7 U/gcells) and 44.7 ± 0.0 U/L (16.9 ± 0.0 U/gcells) for permeabilized cells with CTAB and Triton X-100, respectively. The Triton X-100 was not enough to cause loss of viability and metabolic activity of C. guilliermondii. Freezing-thawing treatment promoted partial loss of cell viability. On the other hand the cells treated with CTAB were totally affected. The biotransformation of xylose to xylitol was studied by employing C. gulliermondii FTI 20037 in two different forms namely unpermeabilized cells and permeabilized cells. The maximum xylitol yield of about 60% was observed with unpermeabilized yeast cells and Triton X-100 permeabilized cells after 10 h of reaction time. In conclusion, surfactants and freezing-thawing treatment provides a simple and mild procedure for C.guilliermondii permeabilization. The method may be especially useful for the in situ determination of G6PD. Response surface methodology was found effective in optimizing and determining the interactions among process variables for the permeabilization process. The use of permeabilized cells can help to overcome the problems/costs associated with enzyme extraction and purification from yeast cells and in the development of a low-cost technology for xylitol production.
7

Avaliação do desempenho das leveduras Candida guilliermondii e Kluyveromyces marxianus em hidrolisado de bagaço de maça / Evaluation of the performance of the yeasts Candida guilliermondii and Kluyveromyces marxianus in apple pomace hemicellulosic hydrolysate

Dalanhol, Katia Caroline França 11 August 2014 (has links)
Em um contexto de sustentabilidade onde resíduos devem ser aproveitados na tentativa de gerar novos produtos, energéticos ou não encontra-se o bagaço de maçã, o resíduo oriundo da prensagem do fruto no processo de produção de suco. Tal biomassa é composta por cascas, polpa, talos e sementes. Representa cerca de 30% da produção anual de maçã no Brasil e tem como opção de utilização, suplementação de ração animal e adubação orgânica. Uma alternativa de aproveitamento para esta biomassa está na sua utilização em bioprocessos como na produção de etanol, xilitol, dentre outros. O xilitol e o etanol vêm sendo amplamente investigados, o xilitol por suas diversas aplicações nos setores odontológico, farmacêutico e alimentício e o etanol pela sua utilização em substituição aos combustíveis fósseis. Desta forma o presente trabalho avaliou o aproveitamento do bagaço de maçã como matéria-prima em bioprocessos. Para tanto, foram desenvolvidas etapas de caracterização da biomassa; obtenção por hidrólise ácida (1% H2SO4, 121?C, 20 min.), concentração a vácuo e, destoxificação (1% de carvão vegetal ativo e ajuste de pH), do hidrolisado hemicelulósico; e fermentação deste hidrolisado por Candida guilliermondii e Kluyveromyces marxianus. As fermentações foram desenvolvidas em frascos Erlenmeyer (125mL), em shaker rotatório (200 rpm, 30°C) por 96 horas, empregando como meio de cultivo o hidrolisado hemicelulósico suplementado com (g.L-1) solução de extrato de farelo de arroz (20); CaCl2.2H2O (0,1) e (NH4)2SO4 (2,0). No presente trabalho, o bagaço de maçã apresentou teores (%) de 32,62 de celulose, 25,38 de lignina e 23,60 de hemicelulose, enquanto o hidrolisado o qual foi destoxificado em separado para as fermentações com as leveduras teve como constituintes (g.L-1): xilose (29,65), glicose (20,79), arabinose (19,93), ácido acético (2,07), furfural (0,03) e hidroximetilfurfural (0,11). Foi constatado que ambas as leveduras consumiram totalmente a glicose (12h) e parcialmente as pentoses, xilose e arabinose, sendo a última consumida lentamente por C. guilliermondii e apenas nas últimas 24 horas de cultivo por K. marxianus Como resultado, C. guilliermondii produziu xilitol (9,35g.L-1) e K. marxianus tanto xilitol (9,10g.L-1) quanto etanol (10,47 g.L-1) como principais bioprodutos. As máximas atividades enzimáticas (U/mgprot) de xilose redutase (XR) e xilitol desidrogenase (XDH) das leveduras empregadas foram 0,23 e 0,53 para C. guilliermondii e 0,08 e 0,08 para K. marxianus, respectivamente. Baseando-se nos resultados obtidos no presente trabalho, pode-se afirmar que o bagaço de maçã é uma biomassa promissora para ser aproveitada como matéria-prima em bioprocessos que visam a produção de xilitol e/ou etanol. / In a sustainability context in which residues must be used for obtaining new energetic or non-energetic products, vegetal biomass becomes an important feedstock for bioprocess. One of those residues is apple pomace, which is produced in the fruit milling during the juice production process. This biomass is composed by skin, pulp, stalk and seeds. It represents about 30% of apple annual production in Brazil, and the conventional uses are animal feeding and organic fertilization. One alternative to use this biomass is its utilization as feedstock in bioprocesses, such as ethanol and xylitol production. Extensive research is being performed in xylitol and ethanol production due to the important applications of xylitol in odontological, pharmaceutical and food industries, as well as because of the utilization of ethanol as substitute of fossil fuels. In this way, the present work evaluated the use of apple pomace as feedstock for bioprocess, through the development of stages of biomass characterization; dilute-acid hydrolysis (1% H2SO4, 121?C, 20 min.), vacuum concentration and detoxification (pH adjustment and activated charcoal adsorption) of the hemicellulosic hydrolysate and fermentation of this hydrolysate by Candida guilliermondii and Kluyveromyces marxianus. The fermentations were performed in Erlenmeyer flasks (125mL) in a rotatory shake (200rpm, 30ºC) for 96h, employing as culture medium the hemicellulosic hydrolysate supplemented with (g.L-1) rice bran extract (20), CaCl2·2H2O (0.1) and (NH4)2SO4 (2.0). In this work, the composition (%) of apple was 32.62 of cellulose, 25.38 of lignin and 23.60 of hemicellulose. The hydrolysate was separately detoxified for the fermentations with the yeasts, and has the following composition (g.L-1): xylose (29.65), glucose (20.79), arabinose (19.93), acetic acid (2.07), furfural (0.03) and 5-hydroxymethylfurfural (0.11). It was verified that both yeasts consumed totally glucose (12h) and partially pentoses, i.e. xylose and arabinose, the latter being consumed slowly by C. guilliermondii and only in the last 24h of fermentation by K. marxianus. The main products for C. guilliermondii was xylitol (9.35g.L-1) while for K. marxianus it was ethanol (10.47g.L-1) and xylitol (9.10 g.L-1) as well. The maximum enzymatic activities (U/mgprot) of Xylose Reductase (XR) and Xylitol Dehydrogenase (XDH) were 0.23 e 0.53 for C. guilliermondii and 0.08 and 0.08 for K. marxianus, respectively. Based on the results of the present work, it can be stated that apple pomace is a promissory biomass to be used as feedstock in bioprocess for xylitol and/or ethanol production.
8

Avaliação do desempenho das leveduras Candida guilliermondii e Kluyveromyces marxianus em hidrolisado de bagaço de maça / Evaluation of the performance of the yeasts Candida guilliermondii and Kluyveromyces marxianus in apple pomace hemicellulosic hydrolysate

Katia Caroline França Dalanhol 11 August 2014 (has links)
Em um contexto de sustentabilidade onde resíduos devem ser aproveitados na tentativa de gerar novos produtos, energéticos ou não encontra-se o bagaço de maçã, o resíduo oriundo da prensagem do fruto no processo de produção de suco. Tal biomassa é composta por cascas, polpa, talos e sementes. Representa cerca de 30% da produção anual de maçã no Brasil e tem como opção de utilização, suplementação de ração animal e adubação orgânica. Uma alternativa de aproveitamento para esta biomassa está na sua utilização em bioprocessos como na produção de etanol, xilitol, dentre outros. O xilitol e o etanol vêm sendo amplamente investigados, o xilitol por suas diversas aplicações nos setores odontológico, farmacêutico e alimentício e o etanol pela sua utilização em substituição aos combustíveis fósseis. Desta forma o presente trabalho avaliou o aproveitamento do bagaço de maçã como matéria-prima em bioprocessos. Para tanto, foram desenvolvidas etapas de caracterização da biomassa; obtenção por hidrólise ácida (1% H2SO4, 121?C, 20 min.), concentração a vácuo e, destoxificação (1% de carvão vegetal ativo e ajuste de pH), do hidrolisado hemicelulósico; e fermentação deste hidrolisado por Candida guilliermondii e Kluyveromyces marxianus. As fermentações foram desenvolvidas em frascos Erlenmeyer (125mL), em shaker rotatório (200 rpm, 30°C) por 96 horas, empregando como meio de cultivo o hidrolisado hemicelulósico suplementado com (g.L-1) solução de extrato de farelo de arroz (20); CaCl2.2H2O (0,1) e (NH4)2SO4 (2,0). No presente trabalho, o bagaço de maçã apresentou teores (%) de 32,62 de celulose, 25,38 de lignina e 23,60 de hemicelulose, enquanto o hidrolisado o qual foi destoxificado em separado para as fermentações com as leveduras teve como constituintes (g.L-1): xilose (29,65), glicose (20,79), arabinose (19,93), ácido acético (2,07), furfural (0,03) e hidroximetilfurfural (0,11). Foi constatado que ambas as leveduras consumiram totalmente a glicose (12h) e parcialmente as pentoses, xilose e arabinose, sendo a última consumida lentamente por C. guilliermondii e apenas nas últimas 24 horas de cultivo por K. marxianus Como resultado, C. guilliermondii produziu xilitol (9,35g.L-1) e K. marxianus tanto xilitol (9,10g.L-1) quanto etanol (10,47 g.L-1) como principais bioprodutos. As máximas atividades enzimáticas (U/mgprot) de xilose redutase (XR) e xilitol desidrogenase (XDH) das leveduras empregadas foram 0,23 e 0,53 para C. guilliermondii e 0,08 e 0,08 para K. marxianus, respectivamente. Baseando-se nos resultados obtidos no presente trabalho, pode-se afirmar que o bagaço de maçã é uma biomassa promissora para ser aproveitada como matéria-prima em bioprocessos que visam a produção de xilitol e/ou etanol. / In a sustainability context in which residues must be used for obtaining new energetic or non-energetic products, vegetal biomass becomes an important feedstock for bioprocess. One of those residues is apple pomace, which is produced in the fruit milling during the juice production process. This biomass is composed by skin, pulp, stalk and seeds. It represents about 30% of apple annual production in Brazil, and the conventional uses are animal feeding and organic fertilization. One alternative to use this biomass is its utilization as feedstock in bioprocesses, such as ethanol and xylitol production. Extensive research is being performed in xylitol and ethanol production due to the important applications of xylitol in odontological, pharmaceutical and food industries, as well as because of the utilization of ethanol as substitute of fossil fuels. In this way, the present work evaluated the use of apple pomace as feedstock for bioprocess, through the development of stages of biomass characterization; dilute-acid hydrolysis (1% H2SO4, 121?C, 20 min.), vacuum concentration and detoxification (pH adjustment and activated charcoal adsorption) of the hemicellulosic hydrolysate and fermentation of this hydrolysate by Candida guilliermondii and Kluyveromyces marxianus. The fermentations were performed in Erlenmeyer flasks (125mL) in a rotatory shake (200rpm, 30ºC) for 96h, employing as culture medium the hemicellulosic hydrolysate supplemented with (g.L-1) rice bran extract (20), CaCl2·2H2O (0.1) and (NH4)2SO4 (2.0). In this work, the composition (%) of apple was 32.62 of cellulose, 25.38 of lignin and 23.60 of hemicellulose. The hydrolysate was separately detoxified for the fermentations with the yeasts, and has the following composition (g.L-1): xylose (29.65), glucose (20.79), arabinose (19.93), acetic acid (2.07), furfural (0.03) and 5-hydroxymethylfurfural (0.11). It was verified that both yeasts consumed totally glucose (12h) and partially pentoses, i.e. xylose and arabinose, the latter being consumed slowly by C. guilliermondii and only in the last 24h of fermentation by K. marxianus. The main products for C. guilliermondii was xylitol (9.35g.L-1) while for K. marxianus it was ethanol (10.47g.L-1) and xylitol (9.10 g.L-1) as well. The maximum enzymatic activities (U/mgprot) of Xylose Reductase (XR) and Xylitol Dehydrogenase (XDH) were 0.23 e 0.53 for C. guilliermondii and 0.08 and 0.08 for K. marxianus, respectively. Based on the results of the present work, it can be stated that apple pomace is a promissory biomass to be used as feedstock in bioprocess for xylitol and/or ethanol production.
9

Ampliação de escala da produção biotecnológica de xilitol a partir do bagaço de cana-de-açúcar / Evaluation of the biotechnological process for xylitol obtainment at different scales from the sugarcane bagasse hemicellulosic hydrolysate

Arruda, Priscila Vaz de 15 July 2011 (has links)
A conversão de biomassa vegetal em produtos químicos e energia é essencial a fim de sustentar o nosso modo de vida atual. O bagaço de cana-de-açúcar, matériaprima disponível em abundância no Brasil, poderá tanto ajudar a suprir a crescente demanda pelo etanol combustível como ser empregado para obtenção de produtos de valor agregado, tais como xilitol, além de trazer vantagens econômicas para o setor sucroalcooleiro. O xilitol, um poliol com poder adoçante semelhante ao da sacarose e com propriedades peculiares, como metabolismo independente de insulina, anticariogenicidade e aplicações na área clínica, no tratamento de osteoporose e de doenças respiratórias, é obtido em escala comercial por catálise química de materiais lignocelulósicos. A produção biotecnológica de xilitol como alternativa ao processo químico vem sendo pesquisada e os resultados revelam que a presença de compostos tóxicos nos hidrolisados hemicelulósicos resultantes do processo de hidrólise ácida contribui para sua baixa fermentabilidade. Isto se deve à inibição do metabolismo microbiano causada principalmente por compostos tais como ácidos orgânicos, fenólicos e íons metálicos. No presente trabalho foi avaliado o efeito de diferentes fontes de carbono (xilose, glicose e mistura de xilose e glicose) empregadas no preparo do inóculo de Candida guilliermondii FTI 20037 sobre a bioconversão de xilose em xilitol a partir de fermentações em frascos Erlenmeyer de hidrolisados hemicelulósicos submetidos a procedimentos de destoxificação. A condição de favorecimento deste bioprocesso foi empregada para a avaliação da ampliação de escala em fermentadores de 2,4L para 16L, utilizando como critério de ampliação o KLa (igual a 15h-1). De acordo com os resultados, os máximos valores dos parâmetros fermentativos como fator de conversão de xilose em xilitol e produtividade em xilitol foram alcançados com a utilização de inóculo obtido em xilose durante fermentação do hidrolisado destoxificado por resinas (YP/S = 0,81 g g-1 e QP = 0,60 g L-1 h-1, respectivamente), embora o emprego de carvão ativado tenha gerado valores de rendimento próximos para as diferentes fontes de carbono (YP/S variando de 0,78 a 0,80 g g-1). Considerando o valor de fator de conversão e que o procedimento de destoxificação com carvão ativado é o de menor custo e de mais fácil manipulação em comparação ao processo com resinas, os experimentos de ampliação de escala da produção de xilitol por C. guilliermondii foram realizados nesta condição de destoxificação e empregando-se xilose como fonte de carbono para o inóculo. Nesta etapa ficou evidente a viabilidade de ampliação de escala de produção de xilitol de fermentador de 2,4L para 16L, já que os valores dos parâmetros fermentativos avaliados foram semelhantes entre os fermentadores (valores médios: YP/S ≈ 0,68 g g-1 e QP ≈ 0,28 g L-1 h-1). No entanto, tais valores foram inferiores aos obtidos em frascos Erlenmeyer, possivelmente devido às condições de disponibilidade de oxigênio diferirem nos fermentadores de bancada, uma vez que o oxigênio é o parâmetro mais crítico neste bioprocesso. / The conversion of vegetable biomass into chemicals and energy is essential to sustain our current style of life. Sugarcane bagasse, a raw material abundantly available in Brazil, greatly contributes to the supply of the evergrowing demand for ethanol. Furthermore, biomass can be employed for obtaining value-added products, such as xylitol, as well as bring economical advantages for the sugar-ethanol sector. Xylitol, a polyol with sweetener power similar to that of saccharose and peculiar properties such as insulin-independent metabolism, anticariogenic power, and applications in the clinical area, in the treatment of osteoporosis and respiratory diseases, is obtained on a commercial scale by chemical catalysis of lignocellulosic materials. The biotechnological production of xylitol as an alternative to the chemical process has been researched and the results reveal that the presence of toxic compounds in hemicelllosics hydrolysates resulting from acid hydrolysis process contributes to its low fermentability. Such toxicity could be due to the inhibition of microbial metabolism promoted mainly by compounds such as organic acids, phenols and metallic ions. In the present work, the effect of different carbon sources (xylose, glucose and a mixture of xylose and glucose) used in the inoculum preparation of Candida guilliermondii FTI 20037 for the xylose-to-xylitol bioconversion by fermentation of hemicellulosics hydrolysates submitted to detoxification procedures in Erlenmeyer flasks was evaluated. The best condition for this bioprocess was employed to evaluate the scale up from the 2.4L to 16L fermentors, using KLa (equal to 15h-1) as scale-up criteria. According to the results the highest values of fermentative parameters such as xylitol yield and productivity were achieved with the use of inoculum cultivated on xylose during the fermentation of hydrolysate detoxified with resins (YP/S = 0.81 g g-1 and QP = 0.60 g L-1 h-1, respectively), although with the use of charcoal the yield value was similar (YP/S ranging for 0.78 to 0.80 g g-1), regardless of the carbon source employed. Considering the value of xylitol yield and that detoxification with activated charcoal is less expensive and more easily manipulated when compared to detoxification procedure with resins, the experiments for scale up xylitol production by C. guilliermondii were performed in such detoxification condition with xylose as the carbon source for the inoculum. At this stage it was evident the scale up xylitol production from a fermenter of 2.4L to 16L was feasible, since the values of fermentative parameters evaluated were similar to those of the fermentors (medium values YP/S ≈ 0.68 g g-1 e QP ≈ 0.28 g L-1 h-1). However, these values were lower than those obtained in Erlenmeyer flasks, maybe due to conditions of oxygen availability for they differ from those in fermentors, since oxygen is the most critical parameter in this bioprocess.
10

Estudo de viabilidade econômica da produção de xilitol a partir de hidrolisado hemicelulósico de palha de cevada / Economic viability study of xylitol production from hemicellulosic hydrolysate from barley straw

Moraes, Elisângela de Jesus Cândido 03 October 2008 (has links)
Materiais lignocelulósicos, como a palha de cevada, são fontes de baixo custo com potenciais aplicações em bioprocessos. A fração hemicelulósica destes materiais pode ser hidrolisada usando-se ácidos minerais, para a liberação de seu principal açúcar componente, a xilose que é substrato para a bioprodução de xilitol. Já a fração celulósica pode ser deslignificada fazendo uso de álcalis e posteriormente hidrolisada com ácidos minerais para a liberação da glicose. O principal objetivo desta pesquisa foi avaliar economicamente a bioprodução de xilitol a partir da fração hemicelulósica da palha de cevada. A caracterização química da palha de cevada revelou a presença de 38,55% de celulose, 21,41% de hemicelulose e 19,90% de lignina. Após a etapa de caracterização a palha foi hidrolisada utilizando-se ácido sulfúrico para extração da xilose, empregando-se um planejamento fatorial 24-1. As melhores condições de hidrólise foram a uma temperatura de 120ºC, concentração ácida de 2,6%, tempo de reação de 20 minutos e relação sólido: líquido de 1:13,5. Nessas condições obteve-se um rendimento de extração de xilose da ordem de 84,38%. A celolignina resultante desse processo foi submetida a uma nova hidrólise de acordo com planejamento experimental 24-1 sendo que as melhores condições de hidrólise para a máxima eficiência de extração de glicose de 67,96% foi a uma temperatura de 179ºC, concentração ácida de 3%, tempo de reação de 30 minutos e relação sólido: líquido de 1:8. Após a realização das hidrólises, o hidrolisado hemicelulósico foi submetido à destoxificação para eliminação dos compostos inibitórios ao metabolismo microbiano e sua posterior fermentação com a levedura Candida guilliermondii enquanto o hidrolisado celulósico rico em glicose foi utilizado para suplementar o meio de fermentação constituído do hidrolisado hemicelulósico uma vez que a glicose foi um dos parâmetros nutricionais avaliados no planejamento fatorial 26-2 utilizado para as fermentações realizadas em frascos Erlenmeyer. Estes experimentos foram realizados por 72 horas e as melhores condições de cultivo determinadas pelo modelo foram: 3,0 g/L de sulfato de amônio, 1,0 g/L de cloreto de cálcio, 20,0 g/L de solução de extrato farelo de arroz e hidrolisado hemicelulósico contendo o teor de 60 g/L de xilose sendo que a concentração inicial de células em cada frasco foi de 1,0 g/L. Nestas condições obteve-se um consumo de xilose e eficiência de conversão de 96,59 e 59,98%, respectivamente, sendo a produtividade volumétrica de xilitol de 0,48 g/L.h. A fim de avaliar o efeito da disponibilidade de oxigênio sobre a bioconversão de xilose em xilitol foram realizadas fermentações empregando-se as melhores condições de cultivo obtidas em frascos agitados em reator de 1L onde os parâmetros agitação e aeração foram estudados segundo um planejamento fatorial 22. De acordo com os resultados os máximos valores de produção, produtividade volumétrica e fator de conversão de xilose em xilitol foram 51,28 g/L, 0,71 g/L.h e 0,88 g/g, respectivamente, quando a agitação foi de 200 rpm e aeração de 0,9 vvm (KLa≅18h-1) em 72 horas de fermentação. As condições de fermentação estabelecidas durante a utilização de reator de 1 L foram então empregadas para avaliar o processo a partir de um reator de maior capacidade (16 L), utilizando como critério de ampliação o KLa. Os valores de produção, produtividade volumétrica e fator de conversão de xilose em xilitol foram respectivamente 55,63 g/L, 0,77 g/L.h e 0,91 g/g, correspondendo a eficiência de conversão de 99,23%. O caldo fermentado resultante desta fermentação foi submetido à centrifugação e posterior clarificação. Por fim foi realizado um estudo econômico em cada etapa do processo considerando os equipamentos, os meios de cultivo empregados e reagentes, consumo de energia elétrica e água utilizados no processo, bem como a depreciação dos equipamentos. Após este estudo constatou-se que o valor para o xilitol produzido por via biotecnológica a partir do hidrolisado hemicelulósico de palha de cevada é de R$ 1.389,05. / Lignocellulosic materials, such as barley straw, are sources of low cost and with potential applications in bioprocesses. The hemicellulosic fraction of these materials can be hydrolyzed using mineral acids to release xylose, its major sugar component, which is substrate to bioproduction of xylitol. The cellulosic fraction can be delignified using alkalis followed by treatment with mineral acids to release glucose. The main objective of this research was to evaluate the economic bioproduction of xylitol from hemicellulosic fraction of barley straw. Chemical characterization of barley straw revealed the presence of 38.55% cellulose, 21.41% hemicellulose and 19.90% lignin. After the characterization stage, the barley straw was hydrolyzed with sulphuric acid for the extraction of xylose using a 24-1 factorial design. The optimum condition was temperature 120ºC, acid concentration 2.6%, reaction time 20 min and solid:liquid ratio 1:13.5. Under this condition the xylose extraction yield was about 84.38%. The celolignin was then submitted to a new hydrolyze according to a 24-1 factorial design and the best condition for maximum glucose extraction yield (67.96%) was temperature 179ºC, acid concentration 3%, reaction time 30 min and solid:liquid ratio 1:8. After hydrolysis, the hemicellulosic hydrolysate was submitted to a detoxification step to eliminate the compounds inhibitory to the microbial metabolism and fermentation with the yeast Candida guilliermondii while the cellulosic hydrolysate, rich in glucose, was used to supplement the fermentation medium consisting of the hemicellulosic hydrolysate as glucose was one of the nutritional parameters evaluated in the factorial design 26-2 employed to the fermentations carried out in Erlenmeyer flasks. These experiments were conducted for 72 h and the best culture conditions determined by the model were: 3.0 g/L ammonium sulfate, 1.0 g/L calcium chloride, 20.0 g/L solution of rice straw and hemicellulosic hydrolysate containing 60 g/L xylose. The initial cell concentration in each flask was 1.0 g/L. Under this condition the xylose consumption and conversion efficiency was 96.59 and 59.98%, respectively. The volumetric productivity of xylitol was 0.48 g/L.h. To evaluate the effect of oxygen availability on the bioconversion of xylose into xylitol It was realized fermentations employing the best culture conditions obtaining under agitation in 1L reaction where the parameters agitation and aeration were studied using a 22 factorial design. According to the results the maximum values of production, volumetric productivity and the factor of xylose concentration into xylitol were 51,28 g/L, 0.71 g/L.h and 0.88 g/g, respectively, when the agitation was 200 rpm and aeration 0.9 vvm (KLa≅18h-1) in 72 h fermentation. The fermentation conditions established during the utilization of 1 L reactor were then employed to evaluate the process from a reactor of higher capacity (16 L), and KLa was use as criteria to scale up. Production, volumetric productivity and the factor of xylose conversion into xylitol were 55.63 g/L, 0.77 g/L.h and 0.91 g/g, respectively, corresponding to a conversion efficiency of 99.23%. The fermented broth obtained from this fermentation was centrifuged and clarified. An economic study was realized for each stage of the process, considering equipment, reagents of the culture media, electric energy consumption and water utilized in the process, as well as equipment. It was found that the value of biotechnological produced xylitol from hemicellulosic hydrolysate of barley straw is R$ 1.389.05.

Page generated in 0.0929 seconds