• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrastructural, histochemical and molecular features of the invasive phase of candida species

Jayatilake, J. A. M. S. January 2006 (has links)
published_or_final_version / abstract / Dentistry / Doctoral / Doctor of Philosophy
2

Candida albicans agglutinin-like sequence (ALS) gene expression in an in vitro dynamic catheter adhesion model.

January 2010 (has links)
Jin, Dawei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 83-93). / Abstracts in English and Chinese. / ABSTRACT (IN CHINESE) --- p.ii / ABSTRACT (IN ENGLISH) --- p.iv / ACKNOWLEDGEMENTS --- p.vii / CONTENTS --- p.ix / LIST OF TABLES --- p.vxiii / LIST OF FIGURES --- p.xiv / LIST OF ABBREVIATIONS --- p.xvi / Chapter CHAPTER I --- INTRODUCTION --- p.1 / Chapter 1.1 --- Biology of C. albicans --- p.2 / Chapter 1.1.1 --- Taxonomy --- p.2 / Chapter 1.1.2 --- Basic cell biology --- p.2 / Chapter 1.1.2.1 --- Cell cycle and phenotypic switch --- p.2 / Chapter 1.1.2.2 --- Cell wall --- p.3 / Chapter 1.1.3 --- "Morphological, culture and biochemical characteristics" --- p.4 / Chapter 1.1.4 --- Genomics --- p.5 / Chapter 1.1.5 --- Pathogenecity --- p.6 / Chapter 1.2 --- Catheter-related bloodstream infections (CRBSI) caused by C. albicans --- p.7 / Chapter 1.2.1 --- Intravenous catheter type --- p.7 / Chapter 1.2.2 --- Epidemiology of CRBSI caused by C. albicans --- p.8 / Chapter 1.2.3 --- Pathogenesis of intravascular catheter-related infections --- p.9 / Chapter 1.2.4 --- Diagnosis of catheter-related infections --- p.10 / Chapter 1.2.5 --- Prevention and control --- p.11 / Chapter 1.3 --- Mechanism of C. albicans adhesion to catheters --- p.12 / Chapter 1.3.1 --- The definition of microbial adhesion --- p.12 / Chapter 1.3.2 --- Relationship between microbial adhesion and biofilm formation --- p.12 / Chapter 1.4 --- Agglutinin-like sequence (ALS) gene family of C. albicans --- p.14 / Chapter 1.4.1 --- Members of ALS gene family --- p.14 / Chapter 1.4.2 --- Chromosomal location of ALS genes --- p.14 / Chapter 1.4.3 --- ALS gene organization --- p.14 / Chapter 1.4.3.1 --- Three-domain structure of ALS genes --- p.15 / Chapter 1.4.3.2 --- Characterization of ALS genes. --- p.15 / Chapter 1.4.4 --- ALS gene allelic variation --- p.17 / Chapter 1.5 --- Experimental models for catheter adhesion study of C. albicans --- p.17 / Chapter 1.5.1 --- "Static adhesion model for C, albicans" --- p.18 / Chapter 1.5.1.1 --- Advantage of static adhesion model --- p.19 / Chapter 1.5.1.2 --- Limitation of static adhesion model --- p.19 / Chapter 1.5.2 --- Dynamic adhesion model for C. albicans --- p.19 / Chapter 1.5.2.1 --- Advantage of dynamic adhesion model --- p.20 / Chapter 1.5.2.2 --- Limitation of dynamic adhesion model --- p.20 / Chapter 1.5.3 --- Quantification methods of adherent cells --- p.21 / Chapter 1.5.4 --- ALS gene expression study in the in vitro model --- p.22 / Chapter 1.6 --- Aim of study --- p.22 / Chapter CHAPTER II --- MATERIALS & METHODS --- p.24 / Chapter 2.1 --- Strains used in this study --- p.25 / Chapter 2.2 --- Design of an in vitro dynamic adhesion model for C. albicans --- p.26 / Chapter 2.2.1 --- Flask --- p.26 / Chapter 2.2.2 --- Peristaltic pump --- p.26 / Chapter 2.2.3 --- Glass tube and vascular catheters. --- p.27 / Chapter 2.2.4 --- Sterility check of in vitro dynamic adhesion model --- p.27 / Chapter 2.3 --- Construction of C. albicans growth curve --- p.27 / Chapter 2.4 --- Measurement of C. albicans adhesion to catheters --- p.29 / Chapter 2.5 --- Detection of C. albicans ALS genes --- p.30 / Chapter 2.5.1 --- DNA extraction of C. albicans --- p.30 / Chapter 2.5.2 --- ALS primers design --- p.31 / Chapter 2.5.3 --- PCR reaction --- p.32 / Chapter 2.5.4 --- Gel electrophoresis --- p.32 / Chapter 2.5.5 --- Purification of PCR products --- p.33 / Chapter 2.6 --- Construction of E. coli plasmid containing gene --- p.34 / Chapter 2.6.1 --- Ligation using the pGEM®-T Easy Vector --- p.34 / Chapter 2.6.2 --- Preparation of E. coli DH5a electro-competent cells --- p.35 / Chapter 2.6.3 --- Clean up of DNA ligation reaction for electro-transformation --- p.36 / Chapter 2.6.4 --- Electro-transformation of E. coli DH5a electro-competent cells --- p.37 / Chapter 2.6.5 --- Blue / white screening for positive transformation of E. coli DH5a. --- p.37 / Chapter 2.6.6 --- Extraction of plasmid containing ALS1 gene --- p.39 / Chapter 2.6.7 --- Plasmid validation by PCR and gel electrophoresis --- p.39 / Chapter 2.6.8 --- Serial dilution of plasmid solutions for ALS1 standard curve construction --- p.40 / Chapter 2.7 --- C. albicans ALS1 gene expression in dynamic adhesion model --- p.41 / Chapter 2.7.1 --- Design of real-time PCR primers specific for C. albicans ALS1 --- p.41 / Chapter 2.7.2 --- Validation of primers specificity --- p.42 / Chapter 2.7.3 --- RNA extraction of C. albicans cells adhered on catheters --- p.43 / Chapter 2.7.4 --- Complementary DNA (cDNA) synthesis --- p.45 / Chapter 2.7.5 --- Quantitative real-time RT-PCR --- p.46 / Chapter 2.8 --- Statistical analyses --- p.48 / Chapter CHAPTER III --- RESULTS --- p.49 / Chapter 3.1. --- Validation of the in vitro dynamic adhesion model for C. albicans --- p.50 / Chapter 3.2. --- C. albicans growth curve construction --- p.50 / Chapter 3.3. --- Measurement of C. albicans adhesion on catheters --- p.50 / Chapter 3.4. --- Detection of C. albicans SC5314 ALS genes --- p.52 / Chapter 3.5. --- Validation of E. coli plasmid containing ALS1 gene --- p.54 / Chapter 3.6. --- C. albicans ALS 1 gene expression in dynamic adhesion model --- p.54 / Chapter 3.6.1. --- Specificity validation of ALS1 real-time primers --- p.55 / Chapter 3.6.2. --- Quantitative real-time RT-PCR --- p.55 / Chapter CHAPTER IV --- DISCUSSION --- p.57 / Chapter 4.1 --- Experimental design of the in vitro dynamic adhesion model --- p.58 / Chapter 4.1.1 --- Advantages of this in vitro dynamic adhesion model --- p.58 / Chapter 4.1.2 --- Limitation of this in vitro dynamic adhesion model --- p.58 / Chapter 4.1.3 --- Catheter arrangement inside the glass tube --- p.60 / Chapter 4.1.4 --- Reproducibility of experiments in the model --- p.62 / Chapter 4.1.5 --- Identification of potential contamination in the model --- p.63 / Chapter 4.1.6 --- Advantages of removing method for C. albicans adherent cells --- p.64 / Chapter 4.1.7 --- Limitation of removing method for C. albicans adherent cells --- p.64 / Chapter 4.1.8 --- Limitation of statistical analysis --- p.66 / Chapter 4.1.9 --- Primers design --- p.67 / Chapter 4.1.9.1 --- Primers of C. albicans ALS gene detection --- p.67 / Chapter 4.1.9.2 --- Validation of ALS 1 real-time primers specificity --- p.69 / Chapter 4.2 --- C. albicans adhesion to catheters --- p.70 / Chapter 4.2.1 --- Theoretical explanation of C. albicans adhesion to different catheters --- p.71 / Chapter 4.3 --- C. albicans ALS gene expression --- p.74 / Chapter 4.3.1 --- Functions of Als proteins --- p.75 / Chapter 4.3.1.1 --- Adhesive functions --- p.75 / Chapter 4.3.1.2 --- Other functions in C. albicans pathogenesis --- p.75 / Chapter 4.3.2 --- Analysis of ALS1 gene expression pattern in the in vitro model --- p.76 / Chapter 4.4 --- Clinical application of our study --- p.78 / Chapter 4.5 --- Future study --- p.80 / Chapter 4.6 --- Conclusion --- p.81 / REFERENCES --- p.83

Page generated in 0.0832 seconds