Spelling suggestions: "subject:"canonical discriminant analysis"" "subject:"anonical discriminant analysis""
1 |
Essais sur la prévision de la défaillance bancaire : validation empirique des modèles non-paramétriques et étude des déterminants des prêts non performants / Essays on the prediction of bank failure : empirical validation of non-parametric models and study of the determinants of non-performing loansAffes, Zeineb 05 March 2019 (has links)
La récente crise financière qui a débuté aux États-Unis en 2007 a révélé les faiblesses du système bancaire international se traduisant par l’effondrement de nombreuses institutions financières aux États-Unis et aussi par l’augmentation de la part des prêts non performants dans les bilans des banques européennes. Dans ce cadre, nous proposons d’abord d’estimer et de tester l’efficacité des modèles de prévisions des défaillances bancaires. L’objectif étant d’établir un système d’alerte précoce (EWS) de difficultés bancaires basées sur des variables financières selon la typologie CAMEL (Capital adequacy, Asset quality, Management quality, Earnings ability, Liquidity). Dans la première étude, nous avons comparé la classification et la prédiction de l’analyse discriminante canonique (CDA) et de la régression logistique (LR) avec et sans coûts de classification en combinant ces deux modèles paramétriques avec le modèle descriptif d’analyse en composantes principales (ACP). Les résultats montrent que les modèles (LR et CDA) peuvent prédire la faillite des banques avec précision. De plus, les résultats de l’ACP montrent l’importance de la qualité des actifs, de l’adéquation des fonds propres et de la liquidité en tant qu’indicateurs des conditions financières de la banque. Nous avons aussi comparé la performance de deux méthodes non paramétriques, les arbres de classification et de régression (CART) et le nouveau modèle régression multivariée par spline adaptative (MARS), dans la prévision de la défaillance. Un modèle hybride associant ’K-means clustering’ et MARS est également testé. Nous cherchons à modéliser la relation entre dix variables financières et le défaut d’une banque américaine. L’approche comparative a mis en évidence la suprématie du modèle hybride en termes de classification. De plus, les résultats ont montré que les variables d’adéquation du capital sont les plus importantes pour la prévision de la faillite d’une banque. Enfin, nous avons étudié les facteurs déterminants des prêts non performants des banques de l’Union Européenne durant la période 2012-2015 en estimant un modèle à effets fixe sur données de panel. Selon la disponibilité des données nous avons choisi un ensemble de variables qui se réfèrent à la situation macroéconomique du pays de la banque et d’autres variables propres à chaque banque. Les résultats ont prouvé que la dette publique, les provisions pour pertes sur prêts, la marge nette d’intérêt et la rentabilité des capitaux propres affectent positivement les prêts non performants, par contre la taille de la banque et l’adéquation du capital (EQTA et CAR) ont un impact négatif sur les créances douteuses. / The recent financial crisis that began in the United States in 2007 revealed the weaknesses of the international banking system resulting in the collapse of many financial institutions in the United States and also the increase in the share of non-performing loans in the balance sheets of European banks. In this framework, we first propose to estimate and test the effectiveness of banking default forecasting models. The objective is to establish an early warning system (EWS) of banking difficulties based on financial variables according to CAMEL’s ratios (Capital adequacy, Asset quality, Management quality, Earnings ability, Liquidity). In the first study, we compared the classification and the prediction of the canonical discriminant analysis (CDA) and the logistic regression (LR) with and without classification costs by combining these two parametric models with the descriptive model of principal components analysis (PCA). The results show that the LR and the CDA can predict bank failure accurately. In addition, the results of the PCA show the importance of asset quality, capital adequacy and liquidity as indicators of the bank’s financial conditions. We also compared the performance of two non-parametric methods, the classification and regression trees (CART) and the newly multivariate adaptive regression splines (MARS) models, in the prediction of failure. A hybrid model combining ’K-means clustering’ and MARS is also tested. We seek to model the relationship between ten financial variables (CAMEL’s ratios) and the default of a US bank. The comparative approach has highlighted the supremacy of the hybrid model in terms of classification. In addition, the results showed that the capital adequacy variables are the most important for predicting the bankruptcy of a bank. Finally, we studied the determinants of non-performing loans from European Union banks during the period 2012-2015 by estimating a fixed effects model on panel data. Depending on the availability of data we have chosen a set of variables that refer to the macroeconomic situation of the country of the bank and other variables specific to each bank. The results showed that public debt, loan loss provisions, net interest margin and return on equity positively affect non performing loans, while the size of the bank and the adequacy of capital (EQTA and CAR) have a negative impact on bad debts.
|
Page generated in 0.1151 seconds