• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MAGNETISM IN A NUMBER OF METAL ORGANIC FRAMEWORKS (MOFs) WITH 1D AND 3D CHARACTERISTICS: AN EXPERIMENTAL AND ANALYTICAL STUDY

Hamida, Youcef January 2012 (has links)
Metal Organic Frameworks (MOFs) exhibit many excellent physical properties including magnetic properties for potential applications in devices. More importantly for the subject of this thesis, MOFs are ideal for the realization of low dimensional magnetism because of the large selection of ligands connecting magnetic centers in making the framework. The materials studied in this thesis include ten magnetic MOFs of the form M(L1)(L2) [M = Cu, Ni, Co, Fe, Mn; L1 = NDC, bpdc, BDC, BODC, N3; L2 = DMF, H2O, TED, bpy]. Polycrystalline powder samples as well as single crystal samples were synthesized. Their crystal structures were determined, and their magnetic and thermodynamic properties were measured and analyzed. Eight of these materials were characterized as 1D magnets and two as 3D magnets. In the 1D case it is found that above Tm [the temperature at which the magnetic susceptibility χ(T) has a peak] the magnetic behavior of MOFs (S ≥ 1) can be well described with the Classical Fisher Model (CFM). Near and below TC the spins take a more definite orientation than allowed for in the CFM and hence the Ising Model (IM) was used for fitting. Both CFM and IM yield fairly consistent intrachain couplings (J) when applied in their appropriate temperature region. To estimate the interchain exchange (J′), the susceptibility for a magnetic chain in the mean field of neighboring chains is used. In all cases, as expected, the ratio of J to J′ was less than 10%. The special case of Cu(N3)2bpy (S = ½) was analyzed with the spin ½ IM. Although the specific heat data (Ctotal) for most of the 1D MOFs showed no clear phase transition, a low temperature fit to the electron-phonon specific heats yielded apparent heavy fermion-like &gamma values on the order of several hundred mJ/mol K2. The lattice specific heat (C lattice) was estimated using a Debye-Einstein hybrid model. Subtracting Clattice from Ctotal, magnetic specific heat (CM) with a broad peak characteristic of low dimensional magnetism was obtained. The peak in CM was at temperature near that expected from χ(T) fits. The J values obtained from the magnetic specific heat fits were in good agreement with those obtained from χ(T) fits. Once the magnetic specific heat was accounted for, γtakes values in the expected range of few mJ/mol K2. For 3D MOFs [Mn(N3)2bpy and Fe(N3)2bpy], the existence of long range canted antiferromagnetic ordering was observed in both magnetic and specific heat measurements with phase transitions at 38 K and 20 K in the case of Mn(N3)2bpy and Fe(N3)2bpy, respectively. These transition temperatures are considered fairly high for molecular based materials. In both Mn(N3)2bpy and Fe(N3)2bpy, the χ(T) data fit well to the Heisenberg model for a diamond-type network. The transition can clearly be seen with an abrupt increase in the magnetization below TC and a shift to a higher temperature in the specific heat when measured under an applied magnetic field. The systematic approach in this work led to the successful estimate of C lattice resulting in meaningful fitting of χ(T) and Cmagnetic to the appropriate theoretical models in magnetism. It also led the discovery of ferrimagnets or canted antiferromagnets M(N3)2bpy with large coercivity and rather high transition temperature. The results of this study have been published in three articles in the Journal of Applied physics, and two manuscripts are under preparation for submission [1-5]. / Physics
2

Magnetotransporte em poços-quânticos duplos e triplos com diferentes valores do fator g de Landé / Magnetotransport in double and triple quantum wells with different Landé g factor

Armas, Luis Enrique Gómez 24 August 2009 (has links)
Neste trabalho, apresentamos estudos sobre o transporte eletrônico de cargas e diagramas de fase no plano ns-B em bicamadas eletrônicas ou poços quânticos duplos, formados de ligas semiconductoras de AlxGa1-xAs e GaAs, assim como também em poços quânticos triplos de GaAs. Para esta finalidade, amostras de poços duplos com diferentes concentrações de Al (x) dentro de cada poço e triplos de GaAs foram crescidas. Inicialmente, se apresenta um estudo teórico, o qual mostrou que, em poços quânticos duplos em que em cada poço a concetração de Al é diferente, a aplicação de tensões de porta permite a modulação do fator g de Landé dos elétrons confinados nesses poços. Em especial, estudou-se o caso de concentrações de Al que correspondem a valores do fator g com sinal oposto, em cada poço. Posteriormente se faz um estudo teórico da estrutura eletrônica das amostras de poços duplos e triplos, em seguida apresenta-se os fundamentos teóricos que serão de base para a interpretação de nosso resultados experimentais. Na primeira parte de nosso trabalho, medidas de magnetotransporte (Shubnikov-de Haas (SdH) e Hall), foram realizadas em todas as amostras de estudo. Na amostra de poço duplo 3242, com fator g de Landé de sinais opostos foi encontrado o colapso do gap de spin nas oscilações SdH com o incremento do campo magnético, ou seja, a soma da energia de Zeeman mais a energia de troca e correlação é igual ao potencial de desordem. Este colapso é atribuido à competição entre as energias de troca, intracamadas e intercamadas. Foi realizada uma análise das oscilações SdH através da transformada de Fourier (FFT), para mostrar que as propriedades eletrônicas tais como a concentração e mobilidade dos elétrons, nas amostras de poços duplos, decrescem à medida que aumenta a concentracão de Al. As propriedades eletrônicas nas amostras de poços triplos dependem dos parâmetros de crescimento, tal como a largura dos poços e barreira. Na segunda parte, são apresentados diagramas de fase ns-B, obtidos através da justaposição dos espectros de magnetorresistência, em amostras de poços duplos e triplos em campo magnético perpendicular e certos valores de campo inclinado. Mostra-se que, em campo magnético perpendicular, o modelo de uma partícula sem interações descreve com boa aproximação o aparecimento dos anéis no diagrama de fase para a amostra de poço duplo com g = -0,44. No entanto, na amostra com g ~ 0 o modelo não descreve em boa aproximação os diagramas de fase em campo magnético perpendicular e inclinado, precisando de um modelo que inclua termos de interação de muitos corpos para uma possível explicação. Também se prediz a existência de um estado canted antiferromagnético. O modelo também mostrará que os diagramas de fase das amostras de poços triplos têm um comportamento semelhante ao das amostras de poços duplos, quando a densidade de elétrons do poço central é baixa comparada com a densidade dos poços laterais. / In this work, we present studies about the electronic transport of charges and phase diagrams in the ns-B plane in electronic bilayers or double quantum wells formed of both AlxGa1-xAs and GaAs semiconductor alloys, also in GaAs triple quantum wells. For this purpose, double quantum wells with different aluminium compositions (Al(x)) in each well and triple quantum wells samples were growth. Firstly, a theoretical study was presented, which showed that in double quantum wells with different Al compositions, the aplication of gate voltages allow the modulation of the Landé g factor of the electrons confined within each well. In particular, the case where the quantum wells have different Al compositions was studied, which lead to the opposite signs of the electronic g-factor in each well. After this, a theoretical study of the electronic structure has been presented of both double and triple quantum wells, then, a basic theory has been presented, which will be the base for the interpretation of our experimental results. At the frst part of our work, magnetotransport measurements (Shubnikov-de Haas (SdH) and Hall) were performed in all the studied samples. In the double quantum well sample (3242), wich has Landé g-factor with opposite signs in each well, was found the spin gap collapse at the Shubnikov-de Haas oscillations with an increase in the magnetic field, that is, the sum of the bare Zeeman energy and exchange potencial energy has the same magnitude of the disorder potencial. This collapse was attributed to the competition between the interlayer and intralayer exchange energies. Fast Fourier transform (FFT) of the Shubnikov-de Haas oscillations was performed in the double and triple quantum well samples to show that the electronic properties, such as electron density and mobility decrease with the increase of the Al compositions. On the other hand, the electronic properties on the triple quantum well samples depend on growth parameters, such as width and heigh barriers of the wells. At the second part ns- B phase diagrams were determined through the superposed longitudinal magnetoresistance, in the double and triple quantum wells samples at the perpendicular magnetic field and certain values of tilted magnetic fields. It has been shown that in a perpendicular magnetic field a single particle model describes in a good aproximation the appearance of ring structures in the phase diagram of the double quantum well with g = -0:44. Meanwhile, at the sample with vanishing Landé g-factor (g ~ 0) the single particle model can not describe in a good approximation the phase diagram, being a requirement a many particle model for an possivel explanation. It has also been predicted the existence of a canted antiferromagnetic state. Finally, the model will also showed the phase diagram of triple quantum wells are similar to double quantum wells, when the electron density of the middle well is low compared to the side wells.
3

Magnetotransporte em poços-quânticos duplos e triplos com diferentes valores do fator g de Landé / Magnetotransport in double and triple quantum wells with different Landé g factor

Luis Enrique Gómez Armas 24 August 2009 (has links)
Neste trabalho, apresentamos estudos sobre o transporte eletrônico de cargas e diagramas de fase no plano ns-B em bicamadas eletrônicas ou poços quânticos duplos, formados de ligas semiconductoras de AlxGa1-xAs e GaAs, assim como também em poços quânticos triplos de GaAs. Para esta finalidade, amostras de poços duplos com diferentes concentrações de Al (x) dentro de cada poço e triplos de GaAs foram crescidas. Inicialmente, se apresenta um estudo teórico, o qual mostrou que, em poços quânticos duplos em que em cada poço a concetração de Al é diferente, a aplicação de tensões de porta permite a modulação do fator g de Landé dos elétrons confinados nesses poços. Em especial, estudou-se o caso de concentrações de Al que correspondem a valores do fator g com sinal oposto, em cada poço. Posteriormente se faz um estudo teórico da estrutura eletrônica das amostras de poços duplos e triplos, em seguida apresenta-se os fundamentos teóricos que serão de base para a interpretação de nosso resultados experimentais. Na primeira parte de nosso trabalho, medidas de magnetotransporte (Shubnikov-de Haas (SdH) e Hall), foram realizadas em todas as amostras de estudo. Na amostra de poço duplo 3242, com fator g de Landé de sinais opostos foi encontrado o colapso do gap de spin nas oscilações SdH com o incremento do campo magnético, ou seja, a soma da energia de Zeeman mais a energia de troca e correlação é igual ao potencial de desordem. Este colapso é atribuido à competição entre as energias de troca, intracamadas e intercamadas. Foi realizada uma análise das oscilações SdH através da transformada de Fourier (FFT), para mostrar que as propriedades eletrônicas tais como a concentração e mobilidade dos elétrons, nas amostras de poços duplos, decrescem à medida que aumenta a concentracão de Al. As propriedades eletrônicas nas amostras de poços triplos dependem dos parâmetros de crescimento, tal como a largura dos poços e barreira. Na segunda parte, são apresentados diagramas de fase ns-B, obtidos através da justaposição dos espectros de magnetorresistência, em amostras de poços duplos e triplos em campo magnético perpendicular e certos valores de campo inclinado. Mostra-se que, em campo magnético perpendicular, o modelo de uma partícula sem interações descreve com boa aproximação o aparecimento dos anéis no diagrama de fase para a amostra de poço duplo com g = -0,44. No entanto, na amostra com g ~ 0 o modelo não descreve em boa aproximação os diagramas de fase em campo magnético perpendicular e inclinado, precisando de um modelo que inclua termos de interação de muitos corpos para uma possível explicação. Também se prediz a existência de um estado canted antiferromagnético. O modelo também mostrará que os diagramas de fase das amostras de poços triplos têm um comportamento semelhante ao das amostras de poços duplos, quando a densidade de elétrons do poço central é baixa comparada com a densidade dos poços laterais. / In this work, we present studies about the electronic transport of charges and phase diagrams in the ns-B plane in electronic bilayers or double quantum wells formed of both AlxGa1-xAs and GaAs semiconductor alloys, also in GaAs triple quantum wells. For this purpose, double quantum wells with different aluminium compositions (Al(x)) in each well and triple quantum wells samples were growth. Firstly, a theoretical study was presented, which showed that in double quantum wells with different Al compositions, the aplication of gate voltages allow the modulation of the Landé g factor of the electrons confined within each well. In particular, the case where the quantum wells have different Al compositions was studied, which lead to the opposite signs of the electronic g-factor in each well. After this, a theoretical study of the electronic structure has been presented of both double and triple quantum wells, then, a basic theory has been presented, which will be the base for the interpretation of our experimental results. At the frst part of our work, magnetotransport measurements (Shubnikov-de Haas (SdH) and Hall) were performed in all the studied samples. In the double quantum well sample (3242), wich has Landé g-factor with opposite signs in each well, was found the spin gap collapse at the Shubnikov-de Haas oscillations with an increase in the magnetic field, that is, the sum of the bare Zeeman energy and exchange potencial energy has the same magnitude of the disorder potencial. This collapse was attributed to the competition between the interlayer and intralayer exchange energies. Fast Fourier transform (FFT) of the Shubnikov-de Haas oscillations was performed in the double and triple quantum well samples to show that the electronic properties, such as electron density and mobility decrease with the increase of the Al compositions. On the other hand, the electronic properties on the triple quantum well samples depend on growth parameters, such as width and heigh barriers of the wells. At the second part ns- B phase diagrams were determined through the superposed longitudinal magnetoresistance, in the double and triple quantum wells samples at the perpendicular magnetic field and certain values of tilted magnetic fields. It has been shown that in a perpendicular magnetic field a single particle model describes in a good aproximation the appearance of ring structures in the phase diagram of the double quantum well with g = -0:44. Meanwhile, at the sample with vanishing Landé g-factor (g ~ 0) the single particle model can not describe in a good approximation the phase diagram, being a requirement a many particle model for an possivel explanation. It has also been predicted the existence of a canted antiferromagnetic state. Finally, the model will also showed the phase diagram of triple quantum wells are similar to double quantum wells, when the electron density of the middle well is low compared to the side wells.
4

STRUCTURE AND PHYSICAL PROPERTIES OF TRANSITION METAL BASED COMPOUNDS

Ahmed, Sheikh Jamil January 2018 (has links)
Crystalline systems formed with transition metal elements tend to exhibit strong magneto-structural coupling that gives rise to unusual but exciting physical phenomena in these materials. In this dissertation, we present our findings from the studies of structural and physical properties of single phase compounds Co2MnSi, Ni16Mn6Si7 and Mn(Ni0.6Si0.4)2. In addition, the stability of a Ni2MnSi composition in a multiphase system is discussed by both theoretical and experimental approaches. All the works have been conducted with a focus on explaining the fundamental behaviors of these systems that have not been adequately addressed by other studies in the literature. We present an experimental and theoretical investigation of the half-metallic Heusler compound, Co2MnSi to address disorder occupancies and magnetic interactions in the material. Contrary to previous studies, our neutron diffraction refinement of the polycrystalline sample reveals almost identical amount of Mn and Co antisite disorders of ~6.5% and ~7.6%, respectively which is also supported explicitly by our first-principles calculations on the system with defects. A reduction of the net moment of Co2MnSi due to an antiferromagnetic interaction introduced by disordered Mn is observed by our theoretical study. The neutron refinements at 298 K, 100 K, and 4 K further supports such reduction of moments. The work also reports the growth of single crystal by the Czochralski method and determination of a Curie temperature of ~1014 K measured by both the electrical resistivity and dilatometry measurement. Studies of a Ni2MnSi Heusler system reveal two new systems i.e., the Ni16Mn6Si7 G-phase and the Mn(Ni0.6Si0.4)2 based Laves phase with complex crystal structures. These systems exhibit strong magneto-structural coupling that could lead to interesting physical behaviors. The lack of thorough understanding of the properties of these materials inspired us to undertake the present studies. We address the geometrically frustrated two-dimensional magnetic structure and spin canted weak ferromagnetic behavior of Ni16Mn6Si7. Our magnetization and specific heat measurements on a Czochralski grown single crystal sample depicts the paramagnetic to antiferromagnetic transition at 197 K, and a second phase change at 50 K. Furthermore, a gradual drop of zero field cooled magnetic susceptibility is observed below 6 K that is associated with the spin freezing effect. The neutron diffraction on the polycrystalline powder samples at the temperatures of interest reveals that the antiferromagnetism is governed by the magnetic ordering of the Mn ions in the octahedral network. Below the Néel temperature of 197 K, the 2/3 of Mn atom moments form a two-dimensional magnetic arrangement, while the 1/3 moments remain geometrically frustrated. The phase transition at 50 K is found to be associated with the reorientation of the 2D moments to a canted antiferromagnetic state and development of ordering of the frustrated paramagnetic ions. Magnetization measurements as a function of temperature and magnetic field in principal directions, permit to determine the anisotropic magnetic behavior of Ni16Mn6Si7 in terms of the magnetic structure obtained by the neutron diffraction measurements. We also report an irreversible smeared spin-flop type transition for the system at a higher magnetic field. The diffuse scattering due to the short-range ordering is a commonly occurring phenomenon in Laves phase materials. The occurrence of such distinct atomic arrangement can considerably influence the physical behavior of the material. Nevertheless, no structural reconstruction of such atomic distribution in Laves phase has ever been reported in the literature. In this work, we present the structural ordering, and the associated physical behavior of an antiferromagnetic Ni-Mn-Si Laves phase with a composition Mn(Ni0.6Si0.4)2. The possibility of unique short-range ordering in the material is first concluded based on our single crystal diffraction analysis. With the high-resolution transmission electron microscopy and electron energy loss spectroscopy analysis, our work resolves the distinct atomic ordering of the Laves phase system. The investigations reveal the origin of the short-range ordering to arise from a unique arrangement between Ni and Si. The study also presents the atomic resolution mapping of the Si atoms which has never been reported by any previous studies. With further electrical conductivity measurement, we find one of the consequences of the unique ordering reflected in a semiconducting like temperature dependence of the compound. The neutron diffraction at 298 K suggests Mn(Ni0.6Si0.4)2 to be a strong antiferromagnetic system, which is further supported by the successive magnetic susceptibility measurement. The Néel temperature is determined to be 550 K. We also address the stability of the hypothetical ferromagnetic Heusler compound Ni2MnSi which has been proposed to be a stable system by numerous theoretical studies. Our first-principles work corroborates those studies with a negative formation enthalpy of -1.46 eV/formula unit. However, after numerous attempts to synthesize the composition, we conclude that a single phase Heusler Ni2MnSi compound cannot form under ambient conditions. Our results show that the system crystallizes as a mixture of the two Ni-Mn-Si compounds, i.e., the Ni16Mn6Si7 type G-phase and Mn(Ni0.6Si0.4)2 based Laves phase. Our work provides a possible explanation for the unstable Ni2MnSi Heusler compound with the calculation of formation enthalpy of the hypothetical Heusler system in terms of the computed energies of the neighboring phases Ni16Mn6Si7 and Mn(Ni0.6Si0.4)2. / Thesis / Doctor of Philosophy (PhD)
5

Spin orbital coupling in 5d Transition Metal Oxides And Topological Flat Bands

Zhang, Wenjuan January 2021 (has links)
No description available.

Page generated in 0.0504 seconds