Spelling suggestions: "subject:"canterbury earthquakes"" "subject:"canterbury earthquake's""
1 |
Student housing in a post-disaster context : controlling mobility and recreating security.Banbury, Josiah January 2015 (has links)
This thesis examines how 18 University of Canterbury students based in Christchurch experienced housing insecurity during the three years after a series of major earthquakes from late 2010 and throughout 2011. I adopted a qualitative exploratory approach to gather students’ accounts and examine their experiences which were analysed using constructivist grounded theory methods.
Three core categories were identified from the data: mobility, recreating security, and loss. Mobility included the effects of relocation and dislocation, as well as how the students searched for stability. Recreating security required a renewed sense of belonging and also addressed the need to feel physically safe. Lastly, loss included the loss of material possessions and also the loss of voice and political representation.
The theory that emerged from these findings is that the extent to which students were able to control their mobility largely explained their experiences of housing insecurity. When students experienced a loss of control over their mobility they effectively addressed this by being resourceful and drawing on existing forms of capital. This resourcefulness generated a new form of capital, here called security capital, which represents a conceptual contribution to existing debates on students’ experiences of homelessness in a disaster context.
|
2 |
The Spatial and Temporal Patterns of Anxiety and Chest Pain Resulting From The Canterbury EarthquakesReed, Kimberley Jane January 2013 (has links)
The aim of this thesis was to examine the spatial and the temporal patterns of anxiety and chest pain resulting from the Canterbury, New Zealand earthquaeks. Three research objectives were identified: examine any spatial or termporal clusters of anxiety and chest pain; examine the associations between anxiety, chest pain and damage to neighbourhood; and determine any statistically significant difference in counts of anxiety and chest pain after each earthquake or aftershock which resulted in severe damage. Measures of the extent of liquefaction the location of CERA red-zones were used as proxy measures for earthquake damage. Cases of those who presented to Christchurch Public Hospital Emergency Department with either anxiety or chest pain between May 2010 and April 2012 were aggregated to census area unit (CAU) level for analysis.
This thesis has taken a unique approach to examining the spatial and spatio-temporal variations of anxiety and chest pain after an earthquake and offers unique results. This is the first study of its kind to use a GIS approach when examining Canterbury specific earthquake damage and health variables at a CAU level after the earthquakes.
Through the use of spatio-termporal scan modelling, negative and linear regression modelling and temporal linear modelling with dummy variables this research was able to conclude there are significant spatial and temporal variations in anxiety and chest pain resulting from the earthquakes. The spatio-termporal scan modelling identified a hot cluster of both anxiety and chest pain within Christchurch at the same time the earthquakes occurred. The negative binomial model found liquefaction to be a stronger predictor of anxiety than the Canterbury Earthquake Recovery Authority's (CERA) land zones. The linear regression model foun chest pain to be positively associated with all measures of earthquake damage with the exception of being in the red-zone. The temporal modelling identified a significant increase in anxiety cases one month after a major earthquake, and chest pain cases spiked two weeks after an earthquake and gradually decreased over the following five weeks.
This research was limited by lack of control period data, limited measures of earthquake damage, ethical restrictions, and the need for population tracking data. The findings of this research will be useful in the planning and allocation of mental wellbeing resources should another similar event like the Canterbury Earthquakes occur in New Zealand.
|
3 |
Spatial Variation of Magnitude Scaling Factors During the 2010 Darfield and 2011 Christchurch, New Zealand, EarthquakesCarter, William Lake 18 May 2016 (has links)
Magnitude Scaling Factors (MSF) account for the durational effects of strong ground shaking on the inducement of liquefaction within the simplified liquefaction evaluation procedure which is the most commonly used approach for assessing liquefaction potential worldwide. Within the context of the simplified procedure, the spatial variation in the seismic demand imposed on the soil traditionally has been assumed to be solely a function of the spatial variation of the peak amplitude of the ground motions and the characteristics of the soil profile. Conversely, MSF have been solely correlated to earthquake magnitude. This assumption fails to appreciate the inverse correlation between the peak amplitude of ground motions and strong ground motion duration, and thus MSF would seemingly vary spatially.
The combination of well-documented liquefaction response during the Darfield and Christchurch, New Zealand, earthquakes, densely-recorded ground motions for the events, and detailed subsurface characterization provides an unprecedented opportunity to investigate the significance of the spatial variation of MSF on the inducement of liquefaction. Towards this end, MSF were computed at 15 strong motion recording station sites across Christchurch and its surroundings using two established approaches. Trends in the site and spatial variation of the MSF computed for both the Darfield and Christchurch earthquakes are scrutinized and their implications on liquefaction evaluations are discussed. / Master of Science
|
4 |
Seismic Response of the UC Physics Building in the Canterbury EarthquakesMcHattie, Samuel Alexander January 2013 (has links)
The purpose of this thesis is to evaluate the seismic response of the UC Physics Building based on recorded ground motions during the Canterbury earthquakes, and to use the recorded response to evaluate the efficacy of various conventional structural analysis modelling assumptions.
The recorded instrument data is examined and analysed to determine how the UC Physics Building performed during the earthquake-induced ground motions. Ten of the largest earthquake events from the 2010-11 Canterbury earthquake sequence are selected in order to understand the seismic response under various levels of demand. Peak response amplitude values are found which characterise the demand from each event. Spectral analysis techniques are utilised to find the natural periods of the structure in each orthogonal direction. Significant torsional and rocking responses are also identified from the recorded ground motions. In addition, the observed building response is used to scrutinise the adequacy of NZ design code prescriptions for fundamental period, response spectra, floor acceleration and effective member stiffness.
The efficacy of conventional numerical modelling assumptions for representing the UC Physics Building are examined using the observed building response. The numerical models comprise of the following: a one dimensional multi degree of freedom model, a two dimensional model along each axis of the building and a three dimensional model. Both moderate and strong ground motion records are used to examine the response and subsequently clarify the importance of linear and non-linear responses and the inclusion of base flexibility. The effects of soil-structure interaction are found to be significant in the transverse direction but not the longitudinal direction. Non-linear models predict minor in-elastic behaviour in both directions during the 4 September 2010 Mw 7.1 Darfield earthquake. The observed torsional response is found to be accurately captured by the three dimensional model by considering the interaction between the UC Physics Building and the adjacent structure. With the inclusion of adequate numerical modelling assumptions, the structural response is able to be predicted to within 10% for the majority of the earthquake events considered.
|
5 |
Experimental evaluation of local bond behaviour of deformed reinforcing bars in concrete structures.Morris, Gareth John January 2015 (has links)
This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures.
The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state.
Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface).
The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship.
Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature.
This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates.
Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.
|
6 |
Learning From DisastersWhite, David Keith January 2013 (has links)
Two projects are documented within this MEM Report:
I. The first project examined what was learnt involving the critical infrastructure in the aftermath of natural disasters in the Canterbury region of New Zealand – the most prominent being the series of earthquakes between 2010 and 2011. The project identified several learning gaps, leading to recommendations for further investigations that could add significant value for the lifeline infrastructure community.
II. Following the Lifeline Lesson Learnt Project, the Disaster Mitigation Guideline series was initiated with two booklets, one on Emergency Potable Water and a second on Emergency Sanitation.
The key message from both projects is that we can and must learn from disasters. The projects described are part of the emergency management, and critical infrastructure learning cycles – presenting knowledge captured by others in a digestible format, enabling the lessons to be reapplied.
Without these kinds of projects, there will be fewer opportunities to learn from other’s successes and failures when it comes to preparing for natural disasters.
|
7 |
CPT Prediction of Soil Behaviour Type, Liquefaction Potential and Ground Settlement in North-West ChristchurchVan T Veen, Lauren Hannah January 2015 (has links)
As a consequence of the 2010 – 2011 Canterbury earthquake sequence, Christchurch experienced widespread
liquefaction, vertical settlement and lateral spreading. These geological processes caused extensive damage to
both housing and infrastructure, and increased the need for geotechnical investigation substantially. Cone
Penetration Testing (CPT) has become the most common method for liquefaction assessment in Christchurch,
and issues have been identified with the soil behaviour type, liquefaction potential and vertical settlement
estimates, particularly in the north-western suburbs of Christchurch where soils consist mostly of silts, clayey
silts and silty clays. The CPT soil behaviour type often appears to over-estimate the fines content within a soil,
while the liquefaction potential and vertical settlement are often calculated higher than those measured after
the Canterbury earthquake sequence.
To investigate these issues, laboratory work was carried out on three adjacent CPT/borehole pairs from the
Groynes Park subdivision in northern Christchurch. Boreholes were logged according to NZGS standards,
separated into stratigraphic layers, and laboratory tests were conducted on representative samples.
Comparison of these results with the CPT soil behaviour types provided valuable information, where 62% of
soils on average were specified by the CPT at the Groynes Park subdivision as finer than what was actually
present, 20% of soils on average were specified as coarser than what was actually present, and only 18% of
soils on average were correctly classified by the CPT. Hence the CPT soil behaviour type is not accurately
describing the stratigraphic profile at the Groynes Park subdivision, and it is understood that this is also the
case in much of northwest Christchurch where similar soils are found.
The computer software CLiq, by GeoLogismiki, uses assessment parameter constants which are able to be
adjusted with each CPT file, in an attempt to make each more accurate. These parameter changes can in some
cases substantially alter the results for liquefaction analysis. The sensitivity of the overall assessment method,
raising and lowering the water table, lowering the soil behaviour type index, Ic, liquefaction cutoff value, the
layer detection option, and the weighting factor option, were analysed by comparison with a set of ‘base
settings’. The investigation confirmed that liquefaction analysis results can be very sensitive to the parameters
selected, and demonstrated the dependency of the soil behaviour type on the soil behaviour type index, as the
tested assessment parameters made very little to no changes to the soil behaviour type plots.
The soil behaviour type index, Ic, developed by Robertson and Wride (1998) has been used to define a soil’s
behaviour type, which is defined according to a set of numerical boundaries. In addition to this, the
liquefaction cutoff point is defined as Ic > 2.6, whereby it is assumed that any soils with an Ic value above this
will not liquefy due to clay-like tendencies (Robertson and Wride, 1998). The method has been identified in
this thesis as being potentially unsuitable for some areas of Christchurch as it was developed for mostly sandy
soils. An alternative methodology involving adjustment of the Robertson and Wride (1998) soil behaviour type
boundaries is proposed as follows:
Ic < 1.31 – Gravelly sand to dense sand
1.31 < Ic < 1.90 – Sands: clean sand to silty sand
1.90 < Ic < 2.50 – Sand mixtures: silty sand to sandy silt
2.50 < Ic < 3.20 – Silt mixtures: clayey silt to silty clay
3.20 < Ic < 3.60 – Clays: silty clay to clay
Ic > 3.60 – Organics soils: peats.
When the soil behaviour type boundary changes were applied to 15 test sites throughout Christchurch, 67%
showed an improved change of soil behaviour type, while the remaining 33% remained unchanged, because
they consisted almost entirely of sand. Within these boundary changes, the liquefaction cutoff point was
moved from Ic > 2.6 to Ic > 2.5 and altered the liquefaction potential and vertical settlement to more realistic
ii
values. This confirmed that the overall soil behaviour type boundary changes appear to solve both the soil behaviour type issues and reduce the overestimation of liquefaction potential and vertical settlement.
This thesis acts as a starting point towards researching the issues discussed. In particular, future work which would be useful includes investigation of the CLiq assessment parameter adjustments, and those which would be most suitable for use in clay-rich soils such as those in Christchurch. In particular consideration of how the water table can be better assessed when perched layers of water exist, with the limitation that only one elevation can be entered into CLiq. Additionally, a useful investigation would be a comparison of the known liquefaction and settlements from the Canterbury earthquake sequence with the liquefaction and settlement potentials calculated in CLiq for equivalent shaking conditions. This would enable the difference between the two to be accurately defined, and a suitable adjustment applied. Finally, inconsistencies between the Laser-Sizer and Hydrometer should be investigated, as the Laser-Sizer under-estimated the fines content by up to one third of the Hydrometer values.
|
8 |
Stopbank Performance during the 2010 - 2011 Canterbury Earthquake SequenceBainbridge, Sophie Elizabeth January 2013 (has links)
In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong
earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0
23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city
and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to
buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered
extensive damage with repairs projected to take several years to complete. This presented an opportunity to
undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this
information can be used to determine simple performance-based concepts that can be applied in practice to
improve the resilience of river protection works.
The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd
February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were
interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation
mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank
damage and the factors that influence a particular style of deformation.
The deformation modes have been used to create a severity classification for the whole stopbank system, being
‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that
contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of
calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at
178 locations along the Kaiapoi and Avon River stopbank systems.
A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone
resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the
critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the
geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific
deformation modes and geotechnical factors. It was found that each individual deformation mode involves a
complex interplay of factors that are difficult to represent through correlative analysis.
There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It
was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials
beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the
triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the
damage rather than the shaking duration.
Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the
severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river
channels and point bar deposits was found to significantly influence the severity and type of deformation. A
review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’
damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the
geomorphology along the Avon River showed that every location within a point bar deposit suffered some form
of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.
|
9 |
Post-Disaster Mobilities: Exploring Household Relocation after the Canterbury EarthquakesDickinson, Simon Bernard January 2013 (has links)
During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence.
The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water).
In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in
this study recorded higher levels of subjective well-being after relocating.
The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy
towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself.
Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red-
zone.
|
10 |
The Performance of House Foundations in the Canterbury EarthquakesHenderson, Duncan Robert Keall January 2013 (has links)
The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned.
Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction.
The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases.
It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction.
It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.
|
Page generated in 0.0721 seconds