• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Thermal Expansion Coefficient Study of Several Magnetic Spin Materials via Capacitive Dilatometry

Liu, Kevin January 2013 (has links)
The work presented in this thesis detail the measurement of the thermal expansion coefficient of three magnetic spin materials. Thermal expansion coefficient values were measured by capacitive dilatometry in several key low (T < 250 K) temperature regions specific to each material. This thesis is separated into several key parts. The first part establishes the theory behind observing phase transitions through the thermal expansion coefficient. Beginning with the classical definitions of the specific heat, compressibility and thermal expansion coefficient, the three properties are related using a property known as the Grüneisen parameter. To first order, the parameter allows phase transitions to be observed by the thermal expansion coefficient. The second part introduces capacitive dilatometry; a technique used to measure the thermal expansion coefficient. Three capacitive dilatometer devices are presented in this section. The silver compact dilatometer, the fused quartz dilatometer and the copper dilatometer. Each device discusses merits and weaknesses to their designs. Particular focus is made on the fused quartz dilatometer which was built during the duration of this thesis. The third part presents research on three magnetic spin materials; LiHoF4, Tb2Ti2O7 and Ba3NbFe3Si2O14. These materials are studied individually focusing on specific aspects. LiHoF4, a candidate material for the transverse field Ising model, provides insight to quantum phase transitions. Thermal expansion coefficient and magnetostriction along the c-axis for T ≈ 1.3-1.8 K and transverse field Ht ≈ 0-4 T were measured extracting critical points for a Ht-T phase diagram. Existing thermal expansion coefficient measurements had evidence of possible re-entrant behaviour. With a high density of low transverse field critical points it was established that LiHoF4 showed no evidence of re-entrant behaviour. The highly debated material Tb2Ti2O7 has a rich, controversial low temperature behaviour. Originally believed to be a spin liquid, specific heat results propose a scenario involving a sample composition dependent ordered state. Still under considerably attention, thermal expansion coefficient measurements were performed for T < 1 K. The results are interpreted to either fit into the proposed scenario or provide evidence for an alternate scenario. The material Ba3NbFe3Si2O14 exhibits a magnetoelectric multiferroic phase below TN ≈ 27 K; a phase where magnetic and electric order simultaneously exist. The formation of this phase is believed to have a similar structural shift observed in hexagonal perovskite multiferroic materials. The ferroelectric ordering in those materials are brought about through a centrosymmetric to non-centrosymmetric structural shift. The thermal expansion and thermal expansion coefficient coefficient along the a and c axis are measured for T > TN searching for a displacive structural phase transition.
2

Ultra-low temperature dilatometry

Dunn, John Leonard January 2010 (has links)
This thesis presents research of two novel magnetic materials, LiHoF4 and Tb2Ti2O7. Experiments were performed at low temperatures and in an applied magnetic field to study thermal expansion and magnetostriction using a capacitive dilatometer designed during this project. This thesis presents 3 distinct topics. This manuscript begins with a thermodynamic description of thermal expansion and magnetostriction. The design of a capacitive dilatometer suitable for use at ultra-low temperatures and in high magnetic fields is presented. The thermal expansion of oxygen free high conductivity copper is used as a test of the absolute accuracy of the dilatometer. The first material studied using this dilatometer was LiHoF4. Pure LiHoF4 is a dipolar coupled Ising ferromagnet and in an applied transverse magnetic field is a good representation of the transverse field Ising model. An ongoing discrepancy between theoretical and experimental work motivates further study of this textbook material. Presented here are thermal expansion and magnetostriction measurements of LiHoF4 in an applied transverse field. We find good agreement with existing experimental work. This suggests that there is some aspect of LiHoF4 or the effect of quantum mechanical fluctuations at finite temperatures which is not well understood. The second material studied is the spin liquid Tb2Ti2O7. Despite theoretical predictions that Tb2Ti2O7 will order at finite temperature, a large body of experimental evidence demonstrates that spins within Tb2Ti2O7 remain dynamic to the lowest temperatures studied. In addition Tb2Ti2O7 also exhibits anomalous thermal expansion below 20K, giant magnetostriction, and orders in an applied magnetic field. Thermal expansion and magnetostriction measurements of Tb2Ti2O7 are presented in applied longitudinal and transverse fields. Zero-field thermal expansion measurements do not repeat the previously observed anomalous thermal expansion. A large feature is observed in thermal expansion at 100mK, in rough agreement with existing experimental work. Longitudinal and transverse magnetic fields were applied to Tb2Ti2O7. Longitudinal magnetostriction measurements show qualitatively di erent behavior than previous observations. These measurements were taken along di erent crystal axes so direct comparison cannot be made. Thermal expansion measurements in an applied transverse field show evolution with the strength of the applied field. This evolution may relate to an ordering transition, however difficulties in repeatability in a transverse field require that these results be repeated in an improved setup.
3

Ultra-low temperature dilatometry

Dunn, John Leonard January 2010 (has links)
This thesis presents research of two novel magnetic materials, LiHoF4 and Tb2Ti2O7. Experiments were performed at low temperatures and in an applied magnetic field to study thermal expansion and magnetostriction using a capacitive dilatometer designed during this project. This thesis presents 3 distinct topics. This manuscript begins with a thermodynamic description of thermal expansion and magnetostriction. The design of a capacitive dilatometer suitable for use at ultra-low temperatures and in high magnetic fields is presented. The thermal expansion of oxygen free high conductivity copper is used as a test of the absolute accuracy of the dilatometer. The first material studied using this dilatometer was LiHoF4. Pure LiHoF4 is a dipolar coupled Ising ferromagnet and in an applied transverse magnetic field is a good representation of the transverse field Ising model. An ongoing discrepancy between theoretical and experimental work motivates further study of this textbook material. Presented here are thermal expansion and magnetostriction measurements of LiHoF4 in an applied transverse field. We find good agreement with existing experimental work. This suggests that there is some aspect of LiHoF4 or the effect of quantum mechanical fluctuations at finite temperatures which is not well understood. The second material studied is the spin liquid Tb2Ti2O7. Despite theoretical predictions that Tb2Ti2O7 will order at finite temperature, a large body of experimental evidence demonstrates that spins within Tb2Ti2O7 remain dynamic to the lowest temperatures studied. In addition Tb2Ti2O7 also exhibits anomalous thermal expansion below 20K, giant magnetostriction, and orders in an applied magnetic field. Thermal expansion and magnetostriction measurements of Tb2Ti2O7 are presented in applied longitudinal and transverse fields. Zero-field thermal expansion measurements do not repeat the previously observed anomalous thermal expansion. A large feature is observed in thermal expansion at 100mK, in rough agreement with existing experimental work. Longitudinal and transverse magnetic fields were applied to Tb2Ti2O7. Longitudinal magnetostriction measurements show qualitatively di erent behavior than previous observations. These measurements were taken along di erent crystal axes so direct comparison cannot be made. Thermal expansion measurements in an applied transverse field show evolution with the strength of the applied field. This evolution may relate to an ordering transition, however difficulties in repeatability in a transverse field require that these results be repeated in an improved setup.
4

A Thermal Expansion Coefficient Study of Several Magnetic Spin Materials via Capacitive Dilatometry

Liu, Kevin January 2013 (has links)
The work presented in this thesis detail the measurement of the thermal expansion coefficient of three magnetic spin materials. Thermal expansion coefficient values were measured by capacitive dilatometry in several key low (T < 250 K) temperature regions specific to each material. This thesis is separated into several key parts. The first part establishes the theory behind observing phase transitions through the thermal expansion coefficient. Beginning with the classical definitions of the specific heat, compressibility and thermal expansion coefficient, the three properties are related using a property known as the Grüneisen parameter. To first order, the parameter allows phase transitions to be observed by the thermal expansion coefficient. The second part introduces capacitive dilatometry; a technique used to measure the thermal expansion coefficient. Three capacitive dilatometer devices are presented in this section. The silver compact dilatometer, the fused quartz dilatometer and the copper dilatometer. Each device discusses merits and weaknesses to their designs. Particular focus is made on the fused quartz dilatometer which was built during the duration of this thesis. The third part presents research on three magnetic spin materials; LiHoF4, Tb2Ti2O7 and Ba3NbFe3Si2O14. These materials are studied individually focusing on specific aspects. LiHoF4, a candidate material for the transverse field Ising model, provides insight to quantum phase transitions. Thermal expansion coefficient and magnetostriction along the c-axis for T ≈ 1.3-1.8 K and transverse field Ht ≈ 0-4 T were measured extracting critical points for a Ht-T phase diagram. Existing thermal expansion coefficient measurements had evidence of possible re-entrant behaviour. With a high density of low transverse field critical points it was established that LiHoF4 showed no evidence of re-entrant behaviour. The highly debated material Tb2Ti2O7 has a rich, controversial low temperature behaviour. Originally believed to be a spin liquid, specific heat results propose a scenario involving a sample composition dependent ordered state. Still under considerably attention, thermal expansion coefficient measurements were performed for T < 1 K. The results are interpreted to either fit into the proposed scenario or provide evidence for an alternate scenario. The material Ba3NbFe3Si2O14 exhibits a magnetoelectric multiferroic phase below TN ≈ 27 K; a phase where magnetic and electric order simultaneously exist. The formation of this phase is believed to have a similar structural shift observed in hexagonal perovskite multiferroic materials. The ferroelectric ordering in those materials are brought about through a centrosymmetric to non-centrosymmetric structural shift. The thermal expansion and thermal expansion coefficient coefficient along the a and c axis are measured for T > TN searching for a displacive structural phase transition.

Page generated in 0.0988 seconds