• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement of bearing load in unicompartmental knee arthroplasty using an instrumented knee bearing

Mentink, Michael Johannes Antonius January 2014 (has links)
The aim of this thesis was to investigate how to construct a system to measure load in a mobile unicompartmental knee replacement (UKR) bearing. In vivo loads have been measured in a total knee replacement (TKR), but with TKR the kinematics are different from those of the normal knee, whereas they are close to normal in a mobile UKR, so the loads measured by an instrumented UKR would be more representative of the normal knee. On the principle of measuring compression of an object under load, the load may be estimated. Compression measurement using a capacitive sensor was the optimal solution to measure load, based on life expectancy of the sensor and bearing integrity. A capacitive sensor within a polyethylene (UHMWPE) bearing has not been used before. The visco-elastic and temperature dependent properties of UHMWPE were determined with experiments. UHMWPE had an approximately linear response after ten minutes of applying a constant load. A temperature sensor should be used in vivo to compensate for temperature effects acting on the elastic modulus of UHMWPE. Finite element modelling demonstrated that positioning the sensor under the centre of the bearing concavity resulted in the largest capacitive change. The influence of various dimensional parameters on sensor output was simulated, and the conclusion was that the sensor only needs to be calibrated once. An electronic module inserted into a bearing had less than 5 % influence on bearing compression. Capacitive sensors were made from polyimide, using standard production methods, and embedded within a UKR bearing using the standard compression moulding process. The embedded sensor had a second order low pass frequency response, with a corner frequency of 9 Hz, twice the frequency required for typical functional loading such as gait. Physiological load signals, gait and step up/down, were applied to the bearing. The capacitance to load response was approximately linear. Load was estimated using a linear method and a dynamic method. The linear method performed best, with an accuracy of force estimation better than 90 %. In vitro tests were performed using a commercially available transceiver, two stan- dard antennas and a custom antenna, designed to be incorporated in the bearing. Wireless communication between an implanted custom antenna and an external an- tenna was shown to be feasible. Experiments were also performed that demonstrate that inductive powering of the bearing was feasible. In addition to load measurement, a proposal for dynamic measurement of the orien- tation angles of both the tibia and the femur was made. Power and volume calculations showed that it is possible to place an electronic module within the bearing. This thesis has not only demonstrated that it is feasible to make an instrumented bearing for UKR but has also provided a basic design for manufacturing.
2

Desenvolvimento de traçador de curvas I-V portátil para arranjos fotovoltaicos

Oliveira, Fernando Schuck de January 2015 (has links)
O presente trabalho apresenta o desenvolvimento de um traçador de curvas I-V para aplicação em arranjos fotovoltaicos a serem medidos em campo. Este sistema utiliza a carga capacitiva como método de polarização do gerador fotovoltaico sendo o chaveamento realizado por transistores bipolares de porta isolada (IGBT). Para controle do chaveamento dos IGBTs e aquisição dos pontos I-V, a placa Arduino foi aplicada demostrando-se adequada para a proposta. Para tanto foi escrito, em uma variação da linguagem de programação C++, o programa de controle desta placa. Foram construídos circuitos auxiliares de amplificação de sinal para realizar as medidas de corrente e de irradiância, sendo nestes casos, usados como sensores um resistor shunt e uma célula de referência calibrada, respectivamente. Para medida da temperatura foi aplicado o sensor de temperatura LM35 que apresentou resultados satisfatórios. Os dados adquiridos pela placa Arduino são salvos em um cartão de memória para posterior análise. A análise de incertezas foi realizada usando métodos estatísticos, onde foram determinados os erros sistemáticos e aleatórios para cada canal de medição. O protótipo construído foi aplicado no levantamento da curva I-V de um gerador fotovoltaico composto de uma série de 3 módulos instalada no terraço do prédio que abriga o simulador solar do Laboratório de Energia Solar da Universidade Federal do Rio Grande do Sul (LABSOL) e o seu resultado foi comparado com o sistema traçador de curvas do laboratório. O resultado, de maneira geral, foi satisfatório quando comparado com a medida a 2 fios pelo sistema do LABSOL, mas apresentou um erro maior quando comparado à medida a 4 fios. Este protótipo também foi submetido a um teste para avaliar sua capacidade de apresentar a curva I-V de forma adequada quando são provocados defeitos na série de módulos. O resultado apresentado pelo protótipo se mostrou bastante semelhante ao do apresentado pelo sistema do LABSOL. De maneira geral, pode-se afirmar que o protótipo, baseado em seus resultados, mostrou-se adequado para aplicação em medidas em campo de curvas I-V de arranjos fotovoltaicos. / This work presents the development of an IV tracer for in field measurement of PV arrays. This system uses a capacitive load as a method for polarizing the photovoltaic generator, with the switching being performed by insulated gate bipolar transistors (IGBT). To control switching of the IGBTs and acquisition of the IV curve, an Arduino board was applied, and was proved to be adequate for this purpose. The Arduino board control program was written in a variation of C++ language. Auxiliary circuits for amplifying the signal were built to measure electric current and irradiance, being in such cases used as sensors a shunt resistor and a calibrated reference solar cell, respectively. For obtaining the temperature, the LM35 temperature sensor was employed, presenting satisfactory results. The data acquired by the Arduino board are saved on a memory stick for later analysis. The uncertainty analysis was performed by using statistical methods, in which the systematic and random errors for each measurement channel were determined. The assembled prototype was applied for measuring the IV curve of a photovoltaic generator composed of a string of 3 modules located on the roof of one of the buildings from Solar Energy Laboratory of the Federal University of Rio Grande do Sul (LABSOL) and its result was compared with the IV tracer used on the laboratory. The result was, generally, satisfactory when compared with the two-wire measurement by the laboratory’s system, but showed a larger error when compared with the four-wire measurement. This prototype was also submitted to a test to evaluate its capacity of adequately presenting the IV curve when defects are induced on the string. The result presented by the prototype was quite similar to that obtained from LABSOL’s system. In general, it is possible to affirm that the prototype, based on its results, proved to be adequate for in field measurement of photovoltaic arrays.
3

Desenvolvimento de traçador de curvas I-V portátil para arranjos fotovoltaicos

Oliveira, Fernando Schuck de January 2015 (has links)
O presente trabalho apresenta o desenvolvimento de um traçador de curvas I-V para aplicação em arranjos fotovoltaicos a serem medidos em campo. Este sistema utiliza a carga capacitiva como método de polarização do gerador fotovoltaico sendo o chaveamento realizado por transistores bipolares de porta isolada (IGBT). Para controle do chaveamento dos IGBTs e aquisição dos pontos I-V, a placa Arduino foi aplicada demostrando-se adequada para a proposta. Para tanto foi escrito, em uma variação da linguagem de programação C++, o programa de controle desta placa. Foram construídos circuitos auxiliares de amplificação de sinal para realizar as medidas de corrente e de irradiância, sendo nestes casos, usados como sensores um resistor shunt e uma célula de referência calibrada, respectivamente. Para medida da temperatura foi aplicado o sensor de temperatura LM35 que apresentou resultados satisfatórios. Os dados adquiridos pela placa Arduino são salvos em um cartão de memória para posterior análise. A análise de incertezas foi realizada usando métodos estatísticos, onde foram determinados os erros sistemáticos e aleatórios para cada canal de medição. O protótipo construído foi aplicado no levantamento da curva I-V de um gerador fotovoltaico composto de uma série de 3 módulos instalada no terraço do prédio que abriga o simulador solar do Laboratório de Energia Solar da Universidade Federal do Rio Grande do Sul (LABSOL) e o seu resultado foi comparado com o sistema traçador de curvas do laboratório. O resultado, de maneira geral, foi satisfatório quando comparado com a medida a 2 fios pelo sistema do LABSOL, mas apresentou um erro maior quando comparado à medida a 4 fios. Este protótipo também foi submetido a um teste para avaliar sua capacidade de apresentar a curva I-V de forma adequada quando são provocados defeitos na série de módulos. O resultado apresentado pelo protótipo se mostrou bastante semelhante ao do apresentado pelo sistema do LABSOL. De maneira geral, pode-se afirmar que o protótipo, baseado em seus resultados, mostrou-se adequado para aplicação em medidas em campo de curvas I-V de arranjos fotovoltaicos. / This work presents the development of an IV tracer for in field measurement of PV arrays. This system uses a capacitive load as a method for polarizing the photovoltaic generator, with the switching being performed by insulated gate bipolar transistors (IGBT). To control switching of the IGBTs and acquisition of the IV curve, an Arduino board was applied, and was proved to be adequate for this purpose. The Arduino board control program was written in a variation of C++ language. Auxiliary circuits for amplifying the signal were built to measure electric current and irradiance, being in such cases used as sensors a shunt resistor and a calibrated reference solar cell, respectively. For obtaining the temperature, the LM35 temperature sensor was employed, presenting satisfactory results. The data acquired by the Arduino board are saved on a memory stick for later analysis. The uncertainty analysis was performed by using statistical methods, in which the systematic and random errors for each measurement channel were determined. The assembled prototype was applied for measuring the IV curve of a photovoltaic generator composed of a string of 3 modules located on the roof of one of the buildings from Solar Energy Laboratory of the Federal University of Rio Grande do Sul (LABSOL) and its result was compared with the IV tracer used on the laboratory. The result was, generally, satisfactory when compared with the two-wire measurement by the laboratory’s system, but showed a larger error when compared with the four-wire measurement. This prototype was also submitted to a test to evaluate its capacity of adequately presenting the IV curve when defects are induced on the string. The result presented by the prototype was quite similar to that obtained from LABSOL’s system. In general, it is possible to affirm that the prototype, based on its results, proved to be adequate for in field measurement of photovoltaic arrays.
4

Desenvolvimento de traçador de curvas I-V portátil para arranjos fotovoltaicos

Oliveira, Fernando Schuck de January 2015 (has links)
O presente trabalho apresenta o desenvolvimento de um traçador de curvas I-V para aplicação em arranjos fotovoltaicos a serem medidos em campo. Este sistema utiliza a carga capacitiva como método de polarização do gerador fotovoltaico sendo o chaveamento realizado por transistores bipolares de porta isolada (IGBT). Para controle do chaveamento dos IGBTs e aquisição dos pontos I-V, a placa Arduino foi aplicada demostrando-se adequada para a proposta. Para tanto foi escrito, em uma variação da linguagem de programação C++, o programa de controle desta placa. Foram construídos circuitos auxiliares de amplificação de sinal para realizar as medidas de corrente e de irradiância, sendo nestes casos, usados como sensores um resistor shunt e uma célula de referência calibrada, respectivamente. Para medida da temperatura foi aplicado o sensor de temperatura LM35 que apresentou resultados satisfatórios. Os dados adquiridos pela placa Arduino são salvos em um cartão de memória para posterior análise. A análise de incertezas foi realizada usando métodos estatísticos, onde foram determinados os erros sistemáticos e aleatórios para cada canal de medição. O protótipo construído foi aplicado no levantamento da curva I-V de um gerador fotovoltaico composto de uma série de 3 módulos instalada no terraço do prédio que abriga o simulador solar do Laboratório de Energia Solar da Universidade Federal do Rio Grande do Sul (LABSOL) e o seu resultado foi comparado com o sistema traçador de curvas do laboratório. O resultado, de maneira geral, foi satisfatório quando comparado com a medida a 2 fios pelo sistema do LABSOL, mas apresentou um erro maior quando comparado à medida a 4 fios. Este protótipo também foi submetido a um teste para avaliar sua capacidade de apresentar a curva I-V de forma adequada quando são provocados defeitos na série de módulos. O resultado apresentado pelo protótipo se mostrou bastante semelhante ao do apresentado pelo sistema do LABSOL. De maneira geral, pode-se afirmar que o protótipo, baseado em seus resultados, mostrou-se adequado para aplicação em medidas em campo de curvas I-V de arranjos fotovoltaicos. / This work presents the development of an IV tracer for in field measurement of PV arrays. This system uses a capacitive load as a method for polarizing the photovoltaic generator, with the switching being performed by insulated gate bipolar transistors (IGBT). To control switching of the IGBTs and acquisition of the IV curve, an Arduino board was applied, and was proved to be adequate for this purpose. The Arduino board control program was written in a variation of C++ language. Auxiliary circuits for amplifying the signal were built to measure electric current and irradiance, being in such cases used as sensors a shunt resistor and a calibrated reference solar cell, respectively. For obtaining the temperature, the LM35 temperature sensor was employed, presenting satisfactory results. The data acquired by the Arduino board are saved on a memory stick for later analysis. The uncertainty analysis was performed by using statistical methods, in which the systematic and random errors for each measurement channel were determined. The assembled prototype was applied for measuring the IV curve of a photovoltaic generator composed of a string of 3 modules located on the roof of one of the buildings from Solar Energy Laboratory of the Federal University of Rio Grande do Sul (LABSOL) and its result was compared with the IV tracer used on the laboratory. The result was, generally, satisfactory when compared with the two-wire measurement by the laboratory’s system, but showed a larger error when compared with the four-wire measurement. This prototype was also submitted to a test to evaluate its capacity of adequately presenting the IV curve when defects are induced on the string. The result presented by the prototype was quite similar to that obtained from LABSOL’s system. In general, it is possible to affirm that the prototype, based on its results, proved to be adequate for in field measurement of photovoltaic arrays.
5

Analys av elnät för begränsning av reaktiv effekt / Analysis of electricity grid for limiting of reactive power

Hudji, Muadh January 2019 (has links)
Ystad Energi har ansvaret över elnätet i Ystads kommun. Med ökande efterfråga om el har samhället blivit sårbart. Därför jobbar myndigheterna och elleverantörer alltid för att säkerställa en trygg och säker elleverans. Variationer i energibehovet under de olika årstider sätter elsystemet i en svår situation gällande elleveranssäkerhet. Ystad Energi har noterat att elnätet matar ut reaktiv effekt mot överliggande nät under sommarperioden. Vilket kan påverka förlusterna och systemets drifttillstånd i både lokal – och regionnät. Därför fokuserar detta arbete på att utföra analyser av reaktiv effekt i nätledningarna som ligger mellan fördelningsstationerna och nätstationerna, d.v.s. i 10.7 kV – nivå av den s.k. distributionsnätet. För att minska elavbrott i systemet på grund av väder och annan yttre påverkan har Ystad Energi grävt ner alla ledningar i nätet. Datainsamlingen från Ystad Energi visar att den reaktiva effektinmatningen ökar mest under sommaren jämfört med andra årstider. Utifrån vetenskapliga teorier och tidigare arbeten anses kablifiering som en viktig orsak till reaktiv effektinmatning i ett elsystem. Datainsamlingen visar även avsevärda variationer i energiförbrukningen mellan vinter- och sommarhalvåret, där energiförbrukningen är mycket lägre under sommaren på grund av klimatet och livsstilen. Därför leder detta till spänningsförhöjning i elnätet som vidare kan leda till kapacitiv reaktiv effektgenerering. I arbetet utförs även analyser på nätet med anslutna produktionsanläggningar såsom vindkraft som kan påverka effektflödet i nätet. Rapporten skall presentera vilka möjliga lösningar som kan vara lämpliga för att minska den reaktiva effekten i nätet. Kraven som ställs från myndigheterna kring reaktiv effekt redovisas även i rapporten. / Ystad Energy is responsible for the power grid in Ystad municipality. With increasing demand for electricity, society has become more vulnerable. Therefore, authorities and electricity suppliers always work to ensure safe and secure electricity supply. Variations in energy demand and climate change put the electrical system in a difficult situation regarding electricity supply safety. Ystad Energy has noted that the power grid has high values of reactive power over a part of year, which may affect the losses and system operating conditions in both local and regional networks. Therefore, this work focuses on performing reactive power analysis in the power cables located between the high voltage substations and the low voltage substations, i.e. in the 10.7 kV level of the distribution network. All overhead lines in Ystad municipality are already buried in the ground to reduce line faults in the system due to weather and other influences. The data collection from Ystad Energy shows that the reactive power input increases most during the summer. Underground cables are considered an important cause that contributes to reactive power input in an electrical system. Data collection also shows significant variations in energy consumption between the winter and summer months, where energy consumption is much lower in the summer due to the climate and human habits. Therefore, this leads to a voltage increase in the mains that can further lead to a capacitive reactive power generation. In the project, an analysis of the power grid has been performed, considering the current grid topology. Simulations of different scenarios with production plants, such as wind power, which can affect the power flow in the network, are also carried out. It was proved that the reactive power in the grid is produced by the underground cables. The report also presents some possible solutions that may be appropriate to reduce the reactive power in the network.
6

Out-of-Loop Compensation Method for Op-Amps Driving Heavy Capacitive Loads

Gandhi, Shubham 01 March 2016 (has links)
It is well known that real op-amps do not share most of the desirable characteristics of an ideal one, particularly those of gain and output impedance. When presented with a capacitive load, such as a MOSFET or ADC, feedback in an op-amp circuit can quickly become unstable. This thesis studies and characterizes an op-amp’s output impedance and how its interaction with this type of load creates a parasitic pole which leads to instability. Applying ideas from feedback control theory, a model for studying the problem is developed from which a generalized method for compensating the undesirable circumstance is formulated. Even in a zero-input state, many real op-amps driving capacitive loads can experience unforced oscillations. A case study is performed with three commonly used devices. First, the output impedance is determined by its dependence on the unity-gain bandwidth, load capacitance, and oscillation frequency. It is fitted into a second-order feedback control model that allows for an analytical study of the problem. It is then shown that a carefully designed passive network can be introduced between the load and op-amp to obtain a properly damped system free of oscillation and well-behaved. Using a shunt resistor is a known and commonly used method for lowering an op-amp’s output impedance to gain stability. This work considers the converse addition of a series capacitor to instead lower the load capacitance seen by the op-amp, a seemingly complementary method that achieves the same goal. A generalized, composite compensation method is developed that uses both the shunt resistor and series capacitor– a strategy not yet found in literature. Relevant formulas for damping ratio and natural frequency are derived that allow the design of a passive compensation network. Furthermore, tradeoffs between compensation, voltage swing, current consumption, and power usage are considered. An emphasis is placed on comparing simulated versus real circuits to highlight the fact that any problem is much worse in real-life than in a simulation. SPICE models and programs aim to de-idealize certain device characteristics, but often cannot account for environmental conditions and manufacturing variance. Thus, an importance is placed on experimental verification guided by simulations.

Page generated in 0.0598 seconds