• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical and experimental study of flow and wall mass transfer rates in capillary driven flows in microfluidic channels

Cito, Salvatore 15 December 2009 (has links)
Micro-channels are believed to open up the prospect of precise control of fluid flow and chemical reactions. The capillary effect can be used to pump fluids in micro-channels and the flow generated can dissolve chemicals previously deposited on the walls of the channel. In this work, numerical and experimental approaches have been developed to investigate the wall mass transfer rate generated by capillary driven flows (CD-Flow). The purpose of this work is to analyze the wall mass transfer rates generated by a CD-Flow in a micro-channel. The results have implications in the optimization and design of devices for biological assays. The correlation for Sherwood number, Reynolds number, contact angle and time is reported. This correlation can be a useful tool for design purposes of microfluidic devices that work with fast heterogeneous reaction and have capillary driven flow as passive pumping system. The numerical results have been confirmed by the experimental results. / La perspectiva del uso de micro-canales para el control preciso del flujo y de las reacciones químicas está ampliamente aceptada. Considerando que el efecto de las tensiones superficiales en la micro-escala es significativo, el bombeo pasivo basado en el uso de la tensión superficial para los Lab-on-a-chip resulta ser el método más eficaz.El propósito de este trabajo es analizar la transferencia de masa en la pared en un campo dinámico de un flujo impulsado por capilaridad. Los resultados permitirán mejorar el diseño y optimizar los dispositivos para ensayos biológicos. Se presenta una correlación entre el número de Sherwood, el número de Reynolds, el ángulo de contacto y el tiempo. La correlación puede ser una herramienta útil en el diseño de dispositivos microfluídicos que trabajen con una reacción rápida y heterogénea y usen el bombeo pasivo impulsado por el flujo capilar. Los resultados numéricos han sido confirmados por los resultados experimentales.
2

Micro-chamber filling experiments for validation of macro models with applications in capillary driven microfluidics

Gauntt, Stephen Byron 15 May 2009 (has links)
Prediction of bubble formation during filling of microchambers is often critical for determining the efficacy of microfluidic devices in various applications. In this study experimental validation is performed to verify the predictions from a previously developed numerical model using lumped analyses for simulating bubble formation during the filling of microchambers. The lumped model is used to predict bubble formation in a micro-chamber as a function of the chamber geometry, fluid properties (i.e. viscosity and surface tension), surface condition (contact angle, surface roughness) and operational parameters (e.g., flow rate) as user defined inputs. Several microchambers with different geometries and surface properties were microfabricated. Experiments were performed to fill the microchambers with different liquids (e.g., water and alcohol) at various flow rates to study the conditions for bubble formation inside the microchambers. The experimental data are compared with numerical predictions to identify the limitations of the numerical model. Also, the comparison of the experimental data with the numerical results provides additional insight into the physics of the micro/nano-scale flow phenomena. The results indicate that contact angle plays a significant role on properties of fluids confined within small geometries, such as in microfluidic devices.
3

Platforms and Molecular Mechanisms for Improving Signal Transduction and Signal Enhancement in Multi-step Point-Of-Care Diagnostics

Kaleb M. Byers (11192533) 28 July 2021 (has links)
<p>Swift recognition of disease-causing pathogens at the point-of-care enables life-saving treatment and infection control. However, current rapid diagnostic devices often fail to detect the low concentrations of pathogens present in the early stages of infection, causing delayed and even incorrect treatments. Rapid diagnostics that require multiple steps and/or elevated temperatures to perform have a number of barriers to use at the point-of-care and in the field, and despite efforts to simplify these platforms for ease of use, many still require diagnostic-specific training for the healthcare professionals who use them. Most nucleic acid amplification assays require hours to perform in a sterile laboratory setting that may be still more hours from a patient’s bedside or not at all feasible for transport in remote or low-resourced areas. The cold-chain storage of reagents, multistep sample preparation, and costly instrumentation required to analyze samples has prohibited many nucleic acid detection and antibody-based assays from reaching the point-of-care. There remains a critical need to bring rapid and accessible pathogen identification technologies that determine disease status and ensure effective treatment out of the laboratory.</p> <p>Paper-based diagnostics have emerged as a portable platform for antigen and nucleic acid detection of pathogens but are often limited by their imperfect control of reagent incubation, multiple complex steps, and inconsistent false positive results. Here, I have developed mechanisms to economically improve thermal incubations, automate dried reagent flow for multistep assays, and specifically detect pathogenic antigens while improving final output sensitivity on paper-based devices. First, I characterize miniaturized inkjet printed joule-heaters (microheaters) that enable thermal control for pathogen lysis and nucleic acid amplification incubation on a low-cost paper-based device. Next, I explore 2-Dimensional Paper Networks as a means to automate multistep visual enhancement reactions with dried reagents to increase the sensitivity and readability of nucleic acid detection with paper-based devices. Lastly, I aim to create a novel Reverse-Transcription Recombinase Polymerase Reaction mechanism to amplify and detect a specific region of the Spike protein domain of SARS-CoV-2. This will allow the rapid detection of SARS-CoV-2 infections to aid in managing the current COVID-19 pandemic. In the future, these tools could be integrated into a rapid diagnostic test for SARS-CoV-2 and other pathogens, ultimately improving the accessibility and sensitivity of rapid diagnostics on multiple fronts.</p>

Page generated in 0.075 seconds