• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fast Detection and Chemical Characterization of Gunshot Residues by CMV-GC-MS and LIBS

Tarifa, Anamary 06 November 2015 (has links)
Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.
2

Exhaled Breath Analysis of Smokers Using CMV-GC/MS

Hamblin, D'Nisha D. 24 May 2016 (has links)
The aim of this research was to demonstrate the potential of the novel pre-concentration device, capillary microextraction of volatiles (CMV), for breath analysis. The CMV offers dynamic sampling of volatile organic compounds with its simple coupling to a GC inlet for GC/MS analysis, avoiding expensive thermal desorption instrumentation needed for sorbent tubes, as well as an increased surface area over a single SPME fiber. CMV collectively identified 119 compounds in the breath of 13 self-reported smokers and 7 nonsmokers. The presence and intensity of twelve compounds were used to classify all the nonsmokers 100% of the time using Principal Component Analysis to elucidate the groupings. In some cases, nicotine was not detected in smokers and they were confused with the nonsmokers. Nicotine was detected in the breath of 69% of smokers with an average mass of 143 ± 31 pg for cigarette smokers from the approximate 5 L sample of breath collected. The successful use of the CMV sampler and preconcentration of breath to distinguish between smokers and nonsmokers served as a proof of concept for future applications of the CMV for detection of marijuana smokers’ breath for impaired driver management.
3

Evaluation of Cryofocusing Capillary Microextraction of Volatiles for Improved Detection of Organic Gunshot Residue on the Hands of Shooters

Mulloor, Jerome 24 March 2017 (has links)
The capillary microextraction of volatiles (CMV) device was equipped with a novel Peltier cooler to investigate cryofocused extraction of organic gunshot residue (OGSR) for the first time. Prior research demonstrated the CMV’s capabilities for detecting nitroglycerin, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite on shooters’ hands via gas chromatography-mass spectrometry. Further method development increased the recoveries of these four target compounds with an optimal 20-minute equilibrium time at 80˚C followed by extracting 3 L at a 1 L/min flow rate. The Cryo-CMV was evaluated for detection of semi-volatile OGSR compounds. The unique challenges presented with sampling of semi-volatiles were overcome by sample heating, applying high (>1 L/min) sampling flow rates and heating the transfer line between the container and cooled CMV. Cryofocusing at -10˚C provided increased recoveries for smokeless powders and OGSR compounds and therefore demonstrates excellent potential for other forensic applications with analysis of VOCs from fire debris and illicit drugs.
4

Improved Dynamic Headspace Sampling and Detection using Capillary Microextraction of Volatiles Coupled to Gas Chromatography Mass Spectrometry

Fan, Wen 14 November 2013 (has links)
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Page generated in 0.1523 seconds