• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geomechanical analysis of caprock integrity

Soltanzadeh, Hamidreza 10 September 2009
To safely store carbon dioxide in enhanced oil recovery/ CO2 sequestration projects it is important to ensure the integrity of the caprock during and after production and injection. A change in fluid pressure and temperature within a porous reservoir will generally induce stress changes within the reservoir and the rocks that surround it. Amongst the potential hazards resulting from these induced stress changes is the reactivation of existing faults or fractures and inducing new fractures, which may breach the hydraulic integrity of the caprock that bounds the reservoir.<p> The theories of inclusions and inhomogeneities have been used in this research to derive semi-analytical and closed-form solutions for induced stress change during pore pressure change within a reservoir and in the surrounding rock, under plane strain and axisymmetric conditions. Methods have been developed to assess fault reactivation and induced fracturing during injection or production within a reservoir. The failure stress change concept for a Coulomb failure criterion has been used to study the likelihood of fault reactivation and induced fracturing within the reservoir. Formulations have been adopted to calculate the critical pressure change for fault reactivation and induced fracturing within the reservoir and in the surrounding rock during injection and production. Sensitivity analysis has been performed to study the effects of different parameters such as initial in-situ stress, reservoir geometry, reservoir depth, reservoir tilt or dip , material property contrast between the reservoir and surrounding rock, fault geometry, fault strength, and intact rock strength. General patterns of induced stress change, in-situ stress evolution, fault reactivation, and induced fracturing have been identified.<p> The developed methodologies have been applied to six different case studies: fault reactivation analysis in the entire field for a synthetic case study; induced fracturing analysis in the entire field in a synthetic case study; fault reactivation and induced stress change analysis within the Ekofisk oil reservoir in North Sea; fault reactivation analysis in the Lacq gas reservoir in France; the Weyburn-Midale EOR/CO2 Storage project in southeast Saskatchewan; and acid gas injection in Zama oil field, Alberta. The results of these case studies show good consistency with field observation, and physical and numerical models.<p> The generality, simplicity, and straightforwardness of the developed methodologies, along with their flexibility to model different plausible scenarios and their ease of implementation for systematic sensitivity analyses makes them suitable for decision-making and uncertainty management, specifically in early stages of reservoir development or site assessment for geological sequestration of carbon dioxide.
2

Geomechanical analysis of caprock integrity

Soltanzadeh, Hamidreza 10 September 2009 (has links)
To safely store carbon dioxide in enhanced oil recovery/ CO2 sequestration projects it is important to ensure the integrity of the caprock during and after production and injection. A change in fluid pressure and temperature within a porous reservoir will generally induce stress changes within the reservoir and the rocks that surround it. Amongst the potential hazards resulting from these induced stress changes is the reactivation of existing faults or fractures and inducing new fractures, which may breach the hydraulic integrity of the caprock that bounds the reservoir.<p> The theories of inclusions and inhomogeneities have been used in this research to derive semi-analytical and closed-form solutions for induced stress change during pore pressure change within a reservoir and in the surrounding rock, under plane strain and axisymmetric conditions. Methods have been developed to assess fault reactivation and induced fracturing during injection or production within a reservoir. The failure stress change concept for a Coulomb failure criterion has been used to study the likelihood of fault reactivation and induced fracturing within the reservoir. Formulations have been adopted to calculate the critical pressure change for fault reactivation and induced fracturing within the reservoir and in the surrounding rock during injection and production. Sensitivity analysis has been performed to study the effects of different parameters such as initial in-situ stress, reservoir geometry, reservoir depth, reservoir tilt or dip , material property contrast between the reservoir and surrounding rock, fault geometry, fault strength, and intact rock strength. General patterns of induced stress change, in-situ stress evolution, fault reactivation, and induced fracturing have been identified.<p> The developed methodologies have been applied to six different case studies: fault reactivation analysis in the entire field for a synthetic case study; induced fracturing analysis in the entire field in a synthetic case study; fault reactivation and induced stress change analysis within the Ekofisk oil reservoir in North Sea; fault reactivation analysis in the Lacq gas reservoir in France; the Weyburn-Midale EOR/CO2 Storage project in southeast Saskatchewan; and acid gas injection in Zama oil field, Alberta. The results of these case studies show good consistency with field observation, and physical and numerical models.<p> The generality, simplicity, and straightforwardness of the developed methodologies, along with their flexibility to model different plausible scenarios and their ease of implementation for systematic sensitivity analyses makes them suitable for decision-making and uncertainty management, specifically in early stages of reservoir development or site assessment for geological sequestration of carbon dioxide.

Page generated in 0.2224 seconds