• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Capsule Networks: Framework and Application to Disentanglement for Generative Models

Moghimi, Zahra 30 June 2021 (has links)
Generative models are one of the most prominent components of unsupervised learning models that have a plethora of applications in various domains such as image-to-image translation, video prediction, and generating synthetic data where accessing real data is expensive, unethical, or compromising privacy. One of the main challenges in designing a generative model is creating a disentangled representation of generative factors which gives control over various characteristics of the generated data. Since the architecture of variational autoencoders is centered around latent variables and their objective function directly governs the generative factors, they are the perfect choice for creating a more disentangled representation. However, these architectures generate samples that are blurry and of lower quality compared to other state-of-the-art generative models such as generative adversarial networks. Thus, we attempt to increase the disentanglement of latent variables in variational autoencoders without compromising the generated image quality. In this thesis, a novel generative model based on capsule networks and a variational autoencoder is proposed. Motivated by the concept of capsule neural networks and their vectorized output, these structures are employed to create a disentangled representation of latent features in variational autoencoders. In particular, the proposed structure, called CapsuleVAE, utilizes a capsule encoder whose vector outputs can translate to latent variables in a meaningful way. It is shown that CapsuleVAE generates results that are sharper and more diverse based on FID score and a metric inspired by the inception score. Furthermore, two different methods for training CapsuleVAE are proposed, and the generated results are investigated. In the first method, an objective function with regularization is proposed, and the optimal regularization hyperparameter is derived. In the second method, called sequential optimization, a novel training technique for training CapsuleVAE is proposed and the results are compared to the first method. Moreover, a novel metric for measuring disentanglement in latent variables is introduced. Based on this metric, it is shown that the proposed CapsuleVAE creates more disentangled representations. In summary, our proposed generative model enhances the disentanglement of latent variables which contributes to the model's generalizing well to new tasks and more control over the generated data. Our model also increases the generated image quality which addresses a common disadvantage in variational autoencoders. / Master of Science / Generative models are algorithms that, given a large enough initial dataset, create data points (such as images) similar to the initial dataset from random input numbers. These algorithms have various applications in different fields, such as generating synthetic healthcare data, wireless systems data generation in extreme or rare conditions, generating high-resolution, colorful images from grey-scale photos or sketches, and in general, generating synthetic data for applications where obtaining real data is expensive, inaccessible, unethical, or compromising privacy. Some generative models create a representation for the data and divide it into several ``generative factors". Researchers have shown that a better data representation is one where the generative factors are ``disentangled", meaning that each generative factor is responsible for only one particular feature in the generated data. Unfortunately, creating a model with disentangled generative factors sacrifices the image quality. In this work, we design a generative model that enhances the disentanglement of generative factors without compromising the quality of the generated images. In order to design a generative model with more disentangled generative factors, we employ capsule networks in the architecture of the generative model. Capsule networks are algorithms that classify the inputted information into different categories. We show that by using capsule networks, our designed generative model achieves higher performance in the quality of the generated images and creates a more disentangled representation of generative factors.
2

A Comparative Study of Routing Methods in Capsule Networks

Malmgren, Christoffer January 2019 (has links)
Recently, the deep neural network structure caps-net was proposed by Sabouret al. [11]. Capsule networks are designed to learn relative geometry betweenthe features of a layer and the features of the next layer. The Capsule network’smain building blocks are capsules, which are represented by vectors. The ideais that each capsule will represent a feature as well as traits or subfeatures ofthat feature. This allows for smart information routing. Capsules traits are usedto predict the traits of the capsules in the next layer, and information is sent toto next layer capsules on which the predictions agree. This is called routing byagreement.This thesis investigates theoretical support of new and existing routing al-gorithms as well as evaluates their performance on the MNIST [16] and CIFAR-10 [8] datasets. A variation of the dynamic routing algorithm presented in theoriginal paper [11] achieved the highest accuracy and fastest execution time.
3

Design of Viewpoint-Equivariant Networks to Improve Human Pose Estimation

Garau, Nicola 31 May 2022 (has links)
Human pose estimation (HPE) is an ever-growing research field, with an increasing number of publications in the computer vision and deep learning fields and it covers a multitude of practical scenarios, from sports to entertainment and from surveillance to medical applications. Despite the impressive results that can be obtained with HPE, there are still many problems that need to be tackled when dealing with real-world applications. Most of the issues are linked to a poor or completely wrong detection of the pose that emerges from the inability of the network to model the viewpoint. This thesis shows how designing viewpoint-equivariant neural networks can lead to substantial improvements in the field of human pose estimation, both in terms of state-of-the-art results and better real-world applications. By jointly learning how to build hierarchical human body poses together with the observer viewpoint, a network can learn to generalise its predictions when dealing with previously unseen viewpoints. As a result, the amount of training data needed can be drastically reduced, simultaneously leading to faster and more efficient training and more robust and interpretable real-world applications.
4

Nuclear Outbursts in the Centers of Galaxies

Reza, Katebi January 2019 (has links)
No description available.

Page generated in 0.0329 seconds