• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conception d'un capteur moléculaire fluorescent en vue de la détection quantitative du mercure en région éloignée

Picard-Lafond, Audrey 31 May 2022 (has links)
Le mercure est universellement reconnu comme un contaminant largement distribué dans l'environnement en raison d'activités naturelles et anthropiques. Comme certaines de ses espèces peuvent se propager et s'accumuler à travers la chaine alimentaire, ce polluant peut poser un risque élevé pour la santé humaine. Heureusement, ces dangers sont atténués par la mise en place de politiques et par le suivi de la qualité de l'eau et des aliments dans des laboratoires d'analyse équipés d'instruments de pointe conçus pour fournir une réponse analytique précise et sensible. Malgré cela, cette approche est plus ou moins adéquate pour répondre aux besoins spécifiques des communautés de régions éloignées, où l'accès limité aux installations d'analyse et les coûts d'expédition élevés entravent le suivi exhaustif des aliments. Pourtant, les peuples autochtones habitant l'Arctique, comme les Inuits, courent un risque plus élevé d'exposition au mercure en raison de l'accumulation préférentielle du contaminant aux pôles et d'un mode de vie reposant fortement sur la chasse et la pêche traditionnelles. Considérant que l'alimentation traditionnelle est une partie vitale de la culture et qu'elle procure d'autres nutriments essentiels à la santé, limiter la consommation de ces aliments n'est pas une option viable et l'amélioration du suivi de la qualité alimentaire est donc capitale. Dès lors, le développement d'une plateforme de détection qui serait facile à utiliser, peu coûteuse à produire et qui présenterait une faible empreinte spatiale permettrait d'accomplir le suivi de la qualité directement sur le terrain, favorisant alors l'autonomie de ces communautés. Compte tenu de ce qui précède, l'objectif principal encadrant les travaux de cette thèse était de développer une sonde moléculaire fluorescente pour la détection sélective et sensible du mercure en bénéficiant de la simplicité instrumentale associée à la récolte de signaux optiques. La mise au point de cette stratégie a d'abord exigé la synthèse d'un fluorophore sensible au Hg et l'étude de ses propriétés de détection. Dans un deuxième temps, la photostabilité et la sensibilité au Hg de la molécule ont été améliorées par son assemblage sur des nanoparticules d'argent ayant des propriétés plasmoniques propices à l'exaltation de la fluorescence par le métal (MEF). Troisièmement, le capteur hybride argent-fluorophore développé a été intégré dans un dispositif microfluidique facilitant l'utilisation de la sonde en éliminant la manipulation des solutions typiquement requise par l'utilisateur pour faire l'analyse du mercure. De plus, comme une préparation d'échantillon précède généralement l'analyse en laboratoire, le potentiel de la méthode de détection dans un dispositif portatif qui intégrerait des étapes de préparation d'échantillon a aussi été évalué et discuté. / Mercury is universally established as a contaminant widely distributed in the environment due to natural and anthropogenic activities. As some of its species can distribute and accumulate through the food chain, this pollutant can cause a significant threat to human health. Fortunately, these hazards are alleviated by establishing policies and monitoring this contaminant in analytical laboratories equipped with state-of-the-art instruments designed to provide a precise and sensitive analytical response. Regardless, this approach is sometimes ill-suited to meet the specific needs of populations living in remote regions where access to facilities is limited and high shipping costs impede timely and reasonably priced food monitoring. Yet, the indigenous peoples inhabiting the Artic, such as the Inuits, are at a higher risk of mercury exposure due to the latter's preferential accumulation at the poles combined with a livelihood that strongly relies on traditional hunting and fishing. Since country food is an integral part of their culture and provides other essential nutrients, limiting the consumption of these foods is not a sustainable route and improving the efficiency of quality monitoring is therefore imperative. This could be achieved through the development of a field-deployable detection platform that would be easy to operate, inexpensive to produce and would exhibit a small spatial footprint. This strategy would eventually enable northern communities to have a better autonomy with regards to food monitoring and the ensuing decision-making. The main objective of the project presented in this thesis was to design a fluorescent molecular probe for the sensitive and selective sensing of mercury by benefitting from the instrumental simplicity associated with the detection of optical signals. Developing this strategy first required the synthesis of a Hg-sensitive fluorophore and the study of its detection properties. In a second stage, the molecule's photostability and Hg-sensitivity was enhanced by its assembly onto silver nanoparticles which exhibit plasmonic properties that are conducive to fluorescence enhancement through a phenomenon called metal-enhanced fluorescence (MEF). Thirdly, the MEF assembly was integrated into a microfluidic cartridge that facilitates the usage of the developed sensor without requiring the complex handling of solutions to perform mercury analysis. Moreover, as a sample preparation is usually carried out beforehand in a laboratory set-up, the compatibility of the detection method in a portable device that would also integrate sample preparation steps was evaluated and discussed.
2

Développement d'un capteur chimique de chlorures à fibres optiques

Dhouib, Meriem January 2019 (has links)
Pour les structures en béton armé, la corrosion des armatures représente la plupart des pathologies observées. Aujourd'hui, pour réduire les coûts de maintenance, une détection avant l'apparition de la corrosion permettrait d'optimiser la gestion des infrastructures. Il est observé que les détériorations les plus rapides sur les structures en béton armé se développent en présence simultanée d'eau liquide et d'ions chlorure qui accélèrent l'apparition et le développement de la corrosion des armatures. Lorsque la concentration de chlorures dans le béton d'enrobage dépasse un certain seuil, la couche de passivation est détruite, et la corrosion des aciers d'armature s'initie. Ce phénomène est accentué dans les pays où les sels de déglaçage sont utilisés pour la sécurité routière, ainsi qu'en bordure de zones maritimes. Ce mémoire propose une nouvelle méthode de monitorage non destructive permettant d'observer l'évolution des concentrations en ions chlorure dans le béton d'enrobage. Ce monitorage permet de surveiller en continu, et en temps réel, la concentration en chlorures libres dans les pores de béton afin d'évaluer la phase d'initiation de la corrosion. Le monitorage consiste en un capteur chimique à fibres optiques qui a été développé et testé. Des études théoriques et expérimentales ont permis la calibration et validation du capteur dans des échantillons de mortier. Une lumière bleue transite à l'intérieur des fibres optiques, atteignant à leur extrémité une pastille sensible aux ions chlorure. Avec l'analyse par spectroscopie de fluorescence, souvent utilisée dans le domaine de la biochimie et de la médecine, les concentrations d'ions chlorure libres dans l'eau interstitielle du béton sont déterminées. Ce capteur de petite taille, est facile à placer à différentes profondeurs dans le béton d'enrobage permettant de suivre en continu la concentration des chlorures contenue dans l'eau interstitielle à l'intérieur des pores du béton. / For reinforced concrete structures, corrosion of reinforcements represents most of the pathologies observed. Today, to reduce maintenance costs, detection before the onset of corrosion would optimize infrastructure management. It is observed that the fastest deterioration on reinforced concrete structures develop in the simultaneous presence of liquid water and chloride ions which accelerate the appearance and development of reinforcement corrosion. When the concentration of chlorides in the concrete coating exceeds a certain threshold, the passivation layer is destroyed, and the corrosion of reinforcing steel is initiated. This phenomenon is accentuated in countries where de-icing salts are used for road safety, as well as, in marine regions. This research work proposes a new non-destructive monitoring method allowing to observe the evolution of the chloride ion concentrations in the cover concrete. This sensor makes it possible to continuously monitor, in real time, the concentration of free chlorides in the concrete pores in order to evaluate the initiation phase of the corrosion. The innovative instrument consists of a fiber optic chemical sensor that has been developed and tested. Theoretical and experimental studies allowed the calibration and validation of the sensor in mortar samples. Blue light travels inside the optical fibers, reaching at their ends a patch sensitive to chloride ions. With fluorescence spectroscopy analysis, often used in the field of biochemistry and medicine, the concentrations of free chloride ions are determined. This small-sized sensor is easy to place at different depths into concrete structures, to continuously monitor the concentration of chlorides contained in the pore solution.
3

Développement d'un senseur électrochimique pour le dosage des nitrates en laboratoire et en pépinière forestière

Caron, William-Olivier 24 April 2018 (has links)
Le lessivage des nitrates, la contamination de la nappe phréatique et l’eutrophisation des cours d’eau figurent parmi les enjeux planétaires qui affectent la durabilité de l’agriculture et des ressources naturelles. Ce mémoire présente le développement d’une première génération d’un nouveau senseur électrochimique pour le dosage de précisions des nitrates. Celui-ci est basé sur la spectroscopie d’impédance électrochimique d’une membrane polymérique sélective aux ions. Grâce à cette approche, un senseur compact et abordable a été produit. Par son utilisation en solutions aqueuses et en substrats de croissance saturés, il a été montré que le senseur permettait de quantifier des ajouts contrôlés de nitrates allant de 0,6 ppm à 60 ppm. La mise en application en substrat de croissance a pu être étudiée en comparaison avec des méthodes certifiées ISO 17025 visant l’analyse de ces substrats. Le senseur a aussi montré une grande versatilité par son utilisation sur divers appareils de mesure d’impédance. En plus, il a démontré une stabilité possible suite à une implantation d’un mois directement en substrat de croissance sous les variables environnementales d’une pépinière forestière. Par l’étude du spectre d’impédance du senseur en solutions pures de différentes concentrations, il a aussi été possible de proposer le circuit électrique équivalent du système, qui met en évidence deux parcours compétitifs du courant, un au coeur de la membrane et un deuxième en solution. Les résultats de ces travaux sont au coeur de deux publications scientifiques dont le manuscrit est inclus à ce mémoire. Pour finir cette étude, des suggestions seront faites pour guider l’amélioration du senseur par le développement d’une deuxième génération de celui-ci. / The nitrate leaching represent a serious problematic because of ground water contamination, surface water eutrophication and soil degradation. The need for a better quantification tools to acquire data on the use of fertilizer is for great interest. This thesis presents the development of the first generation of a new electrochemical sensor for nitrate quantification based on the electrochemical impedance spectroscopy of an ion selective polymeric membrane. With this approach, a compact and cheap sensor has been produced. By its usage in aqueous solution and saturated growing media, it has been shown that the sensor allows the quantification of controlled nitrate additions from 0.6 ppm to 60 ppm. The practical application in growing media has been compared to ISO-17025 certified methods of growth medium analysis. Moreover, the sensor showed great versatility by its compatibility to many impedance measurement apparatus. Also, it has shown great stability under variables environmental condition during one month in a forest nursery. Through the impedance spectra obtained in pure solution at different concentrations, an equivalent electrical circuit has been established for the system, showing two competitive pathways for the current. The first one is going through the membrane and the second is reaching into the solution. The results of these experiments are reported in two scientific publications and included in this thesis. In conclusion, a second generation of sensor is needed to improve the quality performance regarding their selectivity and temporal stability.
4

"Sensor-in-fibre" optical probes for molecular sensing in the gastrointestinal tract of murine models / "Sensor-in-fibre" optical probes for molecular sensing in the gastrointestinal tract of murine models

Azzi, Victor, Azzi, Victor January 2019 (has links)
L’obésité et les maladies cardiométaboliques sont des problèmes de santé publique dans les populations nordiques du Canada ainsi qu’à travers le monde. Il est actuellement proposé que l’augmentation de ces désordres est en partie causée par divers facteurs environnementaux qui génèrent des changements importants du microbiote intestinal. Cette communauté microbienne qui peuple notre tractus gastrointestinal joue un rôle clé dans le métabolisme de nutriments, mais peut aussi avoir des effets néfastes lorsque son équilibre avec l’hôte est perturbé. Cette compréhension a mis en évidence le manque d’outils prédictifs permettant un diagnostic rapide et efficace dans le domaine biomédical. L’analyse actuelle du microbiote est réalisée à posteriori au niveau des selles, ce qui requiert du personnel hautement qualifié de même que des procédures longues et dispendieuses. L’objectif de ce projet est de concevoir un capteur optique qui, une fois implanté dans l’intestin, permettra de détecter en temps réel des biomarqueurs clés produit par le microbiome intestinal. Dans le cadre d’une preuve de concept, une architecture fibrée simple permettant de mesurer quantitativement des variations de pH est démontrée. Contrairement aux capteurs fibrés traditionnels, la sonde optique de ce projet exploite l’onde évanescente générée sur la périphérie de l’interface pour exciter des nanomatériaux greffés dont les propriétés de fluorescence varient selon leur environnement chimique. Les mesures sont possibles grâce à un système optique mobile contrôlé par un logiciel convivial qui permet à un utilisateur nonexpert d’utiliser l’appareil. Les résultats confirment qu’avec un étalonnage préalable il est possible avec cette sonde modèle de prendre des mesures quantitatives du pH en temps réel in vitro. Les expériences préliminaires suggèrent que la sonde permet aussi de mesurer le pH en temps réel dans l’intestin in vivo. / L’obésité et les maladies cardiométaboliques sont des problèmes de santé publique dans les populations nordiques du Canada ainsi qu’à travers le monde. Il est actuellement proposé que l’augmentation de ces désordres est en partie causée par divers facteurs environnementaux qui génèrent des changements importants du microbiote intestinal. Cette communauté microbienne qui peuple notre tractus gastrointestinal joue un rôle clé dans le métabolisme de nutriments, mais peut aussi avoir des effets néfastes lorsque son équilibre avec l’hôte est perturbé. Cette compréhension a mis en évidence le manque d’outils prédictifs permettant un diagnostic rapide et efficace dans le domaine biomédical. L’analyse actuelle du microbiote est réalisée à posteriori au niveau des selles, ce qui requiert du personnel hautement qualifié de même que des procédures longues et dispendieuses. L’objectif de ce projet est de concevoir un capteur optique qui, une fois implanté dans l’intestin, permettra de détecter en temps réel des biomarqueurs clés produit par le microbiome intestinal. Dans le cadre d’une preuve de concept, une architecture fibrée simple permettant de mesurer quantitativement des variations de pH est démontrée. Contrairement aux capteurs fibrés traditionnels, la sonde optique de ce projet exploite l’onde évanescente générée sur la périphérie de l’interface pour exciter des nanomatériaux greffés dont les propriétés de fluorescence varient selon leur environnement chimique. Les mesures sont possibles grâce à un système optique mobile contrôlé par un logiciel convivial qui permet à un utilisateur nonexpert d’utiliser l’appareil. Les résultats confirment qu’avec un étalonnage préalable il est possible avec cette sonde modèle de prendre des mesures quantitatives du pH en temps réel in vitro. Les expériences préliminaires suggèrent que la sonde permet aussi de mesurer le pH en temps réel dans l’intestin in vivo. / Obesity and cardiometabolic diseases (CMD) are major public health issues among Canada’s northern population and throughout the world. It is believed that the exponential rise in CMD incidence is due to numerous environmental factors, which are driving important changes in the gut microbiome. This microbial community which populates our intestinal tract plays a key role in nutrient and energy metabolism, but can also drive pathogenic mechanisms when its interaction with the host is disrupted. This understanding has highlighted the lack of predictive tools and biomarkers for rapid and efficient diagnostic of various diseases within the medical field. Current analysis of the gut microbiota is mostly based on sequencing technologies to determine microbial composition and gene expression, while functional analyses are limited to surrogate markers of microbial activities through stool metabolites. The goal of this study is to develop a “Sensor-in-Fibre” probe with the capacity to detect key microbiome-derived molecules relevant to CMD pathogenesis in real time in vivo. The optical probe takes advantage of evanescent fields generated on its peripheral interface to excite species-selective surface-grafted sensing nanomaterials that have varying fluorescent properties based on the target molecules present in the surrounding environment. As a model system, FITC functionalized with (3-aminopropyl)triethoxysilane was grafted on the periphery of an optical fiber, leading to qualitative pH measurements revealed through fluorescence emission qualities. These measurements are possible due to the use of a mobile signal collection apparatus in conjunction with custom software made to enable a non-expert technician to use it. The experimental results demonstrate that, with the appropriate preparation, it is possible to quantitatively measure pH with this probe structure in vitro and preliminary studies suggest that the probe is also capable of measuring pH in vivo in real time. / Obesity and cardiometabolic diseases (CMD) are major public health issues among Canada’s northern population and throughout the world. It is believed that the exponential rise in CMD incidence is due to numerous environmental factors, which are driving important changes in the gut microbiome. This microbial community which populates our intestinal tract plays a key role in nutrient and energy metabolism, but can also drive pathogenic mechanisms when its interaction with the host is disrupted. This understanding has highlighted the lack of predictive tools and biomarkers for rapid and efficient diagnostic of various diseases within the medical field. Current analysis of the gut microbiota is mostly based on sequencing technologies to determine microbial composition and gene expression, while functional analyses are limited to surrogate markers of microbial activities through stool metabolites. The goal of this study is to develop a “Sensor-in-Fibre” probe with the capacity to detect key microbiome-derived molecules relevant to CMD pathogenesis in real time in vivo. The optical probe takes advantage of evanescent fields generated on its peripheral interface to excite species-selective surface-grafted sensing nanomaterials that have varying fluorescent properties based on the target molecules present in the surrounding environment. As a model system, FITC functionalized with (3-aminopropyl)triethoxysilane was grafted on the periphery of an optical fiber, leading to qualitative pH measurements revealed through fluorescence emission qualities. These measurements are possible due to the use of a mobile signal collection apparatus in conjunction with custom software made to enable a non-expert technician to use it. The experimental results demonstrate that, with the appropriate preparation, it is possible to quantitatively measure pH with this probe structure in vitro and preliminary studies suggest that the probe is also capable of measuring pH in vivo in real time. / Résumé en espagnol / Résumé en espagnol

Page generated in 0.1903 seconds