• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intégration de systèmes multi-capteurs CMOS-MEMS : application à une centrale d’attitude / A CMOS-MEMS inertial measurement unit integration

Alandry, Boris 23 September 2010 (has links)
Les systèmes électroniques actuels intègrent de plus en plus de fonctionnalités nécessitant l'intégration de capteurs très variés. Ces systèmes hétérogènes sont complexes à intégrer notamment lorsque différentes technologies de fabrication sont nécessaires pour les capteurs.Les technologies de fabrication de MEMS avec un procédé CMOS-FSBM offrent un coût de production réduit et permettent d'intégrer sur un même substrat différents types de capteurs (magnétomètres et accéléromètres notamment). Ce procédé de fabrication implique cependant une détection résistive des capteurs avec tous les problèmes qui lui sont associés (faible sensibilité, offset important, bruit de l'électronique). A travers la réalisation de la première centrale inertielle sur une puce, cette thèse renforce l'intérêt d'une approche « CMOS-MEMS » pour la conception de systèmes multi-capteurs. Le système est basé sur une mesure incomplète du champ magnétique terrestre (axes X et Y) et sur la mesure complète du champ gravitationnel. Une électronique de conditionnement des capteurs performante a été développée adressant les principaux problèmes relatifs à une détection résistive permettant ainsi une optimisation de la résolution de chaque capteur. Enfin, deux algorithmes ont été développés pour la détermination de l'attitude à partir de la mesure des cinq capteurs montrant la faisabilité et l'intérêt d'un tel système. / Current electronic systems integrate more and more applications that require the integration of various kinds of sensors. The integration of such heterogeneous systems is complex especially when sensor fabrication processes differ from one to another. MEMS manufacturing processes based on CMOS-FSBM process promote a low-cost production and allow the integration of various types of sensors on the same die (e.g., magnetometers and accelerometers). However, this manufacturing process requires that sensors make use of resistive transduction with its associated drawbacks (low sensitivity, offset, electronic noise). Through the design and the implementation of the first inertial measurement unit (IMU) on a chip, this thesis demonstrates the interest of a “CMOS-MEMS” approach for the design of multi-sensor systems. The IMU is based on the incomplete measurement of the Earth magnetic field (X and Y axis) and the complete measurement of the gravity. An efficient front-end electronic has been developed addressing the most important issues of resistive transduction and thus allowing an optimization of sensor resolution. Finally, two attitude determination algorithms have been developed from the five sensor measurements showing the feasibility and the interest of such a system.
2

Capteurs à base d'assemblages discontinus organisés pour la détection spécifique de gaz / Gas sensors based on organized assembles for specific gas detection

Baklouti, Linda 13 December 2016 (has links)
La détection et la surveillance des gaz est un enjeu important tant pour la sécurité industrielle que pour la protection de l’environnement et des personnes. Le dihydrogène, prend une place de plus en plus importante en tant que combustible et vecteur énergétique mais il est extrêmement inflammable et explosif dans un large domaine de 4 à 75 % dans l’air. De même, l’ammoniac est très utilisé dans l’industrie comme gaz réfrigérant ou comme élément de base pour la production chimiques d’autres composés. Ce gaz présente des risques sur l’environnement et sur les êtres vivants et peut former des mélanges explosifs avec l’air dans les limites de 15 à 28 % en volume. Les capteurs de gaz permettant d’indiquer la présence et/ou la quantification de ces gaz prennent alors toute leur importance. Dans la continuité de nos nombreux travaux sur les capteurs résistifs à base d’assemblages discontinus de nano-objets, l’objet de ce travail de thèse a été de préparer des capteurs résistifs pour la détection de H2 et NH3. Ces capteurs sont à base d’assemblages 2D de nanoparticules de compositions complexes. Trois types de nanoparticules cœur-coquille ont été synthétisés : Au@ZnO, Au@SnO2 et Au@Ag. Différentes techniques physico-chimiques (UV-Visible/TEM / DRX etc) ont permis de caractériser les particules obtenues. L’étape suivante a consisté à les assembler en monocouches compactes. Les films ont été obtenus par la méthode d’assemblage de Langmuir-Blodgett. Après transfert à la surface d’un substrat en verre supportant des électrodes inter digitées, les performances de détection des capteurs résistifs fabriqués ont été alors évaluées. Les capteurs à base de Au@ZnO et Au@SnO2 ont été testés sous H2, tandis que les capteurs à base de Au@Ag l’ont été sous NH3. Les capteurs fabriqués ont montré des performances attractives de détection de H2 et NH3 dans des gammes de concentration étendues. Une autre contribution importante de ce travail concerne la compréhension des mécanismes de détection. Diverses techniques analytiques, tels que la TPD (Température désorption Programmed) et la TPR (Température de réduction programmée) ont été utilisés pour permettre la discussion des les mécanismes impliqués. / Gas sensing and monitoring are important issues for both industrial safety and protection of the environment and human beings. Dihydrogen, is increasingly used as fuel and energy carrier but it is extremely flammable and explosive in a wide range between 4 and 75% in air.Similarly, ammonia is widely used in industry as a cooling gas or as a reagent for the chemical production of other compounds.This gas presents risks to the environment and to living beings and can form explosive mixtures with air within 15 to 28% by volume.Gas sensors, indicating the presence and /or quantification of these gases, are very important.In continuation of our work on resistive sensors based on discontinuous assembly of nano-objects, the aim of this thesis was to prepare resistive sensors for the detection of H2 and NH3.These sensors are based on 2D assemblies of complex compositions of nanoparticles. Three types of core-shell nanoparticles were synthesized: Au@ZnO, Au@SnO2 and Au@Ag. Different physicochemical techniques (UV-Visible / TEM / DRX etc.) were used to characterize the particles. The next step was to assemble them in compact monolayers. The films were obtained by Langmuir-Blodgett assembling technique. Then, they were transferred to the surface of a glass slide supporting interdigitated electrodes. Sensing performances of the as-fabricated resistive sensor were evaluated.Sensors based on Au@ZnO and Au@SnO2 nanoparticles were tested towards H2, while Au@Ag based sensors were tested under NH3.The sensors showed attractive performances in H2 and NH3 detection within wide concentration ranges. Another important contribution of this work is the understanding of detection mechanisms. Various analytical techniques such as TPD (Temperature Programmed Desorption) and TPR (temperature programmed reduction) were used for the discussion of the mechanisms involved.
3

Evaluation de la température des composants à semi-conducteurs de puissance au sein des convertisseurs d’énergie électrique : application aux onduleurs photovoltaïques pour accroitre leurs performances et leur disponibilité / On-line junction temperature measurements in power electronics converters : application to photovoltaic inverters to increase their performance and availability

Ka, Ibrahima 11 December 2017 (has links)
L’utilisation diversifiée des dispositifs de l’électronique de puissance est une conséquence des avancées fulgurantes dans la compréhension théorique de la physique des semi-conducteurs. L’approche applicative se traduit par la conception de modules de puissance au sein desquels sont implantées des puces semi-conductrices. Les densités de puissance injectées dans ces composants ne cessent d’accroitre et les seuils d’intégration sont également toujours repoussés dans le sillage de la conception de systèmes à encombrement réduit. Dès lors, la gestion des contraintes, notamment électrothermiques, est devenue un challenge majeur dans l’utilisation des systèmes de l’électronique de puissance. L’environnement sévère résultant des profils de température contraignants fait qu’une attention particulière est portée sur les aspects de fiabilité des dispositifs. Les stratégies de suivi de l’état de santé des modules et les méthodes de caractérisation des assemblages de puissance nécessitent l’estimation de la température des puces semi-conductrices.Diverses méthodes sont aujourd’hui mises en œuvre afin d‘estimer la température des composants semi-conducteurs ; cette dernière étant assimilée à une température de jonction virtuelle Tjv, caractéristique de la zone active des puces semi-conductrices. Les paramètres électriques thermosensibles (PETS) sont largement utilisés afin d’estimer la température de jonction de ces puces. La problématique de la représentativité de ces PETS n’est toutefois pas suffisamment adressée dans la littérature scientifique. Il est par conséquent nécessaire de mettre au point des moyens et méthodes complémentaires afin d’évaluer des paramètres thermosensibles, notamment dans les conditions de fonctionnement des composants au sein des convertisseurs de l’électronique de puissance.Dans le cadre de nos travaux de thèse, nous avons réalisé une puce semi-conductrice instrumentée qui offre la possibilité de mener de manière simultanée une mesure de température avec un PETS et un capteur résistif. Les procédés classiques de la microélectronique sont adaptés à l’électronique de puissance pour la réalisation de cet outil de validation des PETS. Les capteurs résistifs sont implémentés à la surface de composants de puissance du commerce (Diodes, IGBTs) ; ces composants instrumentés sont par la suite intégrés dans des modules de puissance. Une campagne expérimentale est menée en dernier lieu pour valider le bon fonctionnement des capteurs sur la base d’une comparaison de mesures de température par thermographie infrarouge et avec un PETS dédié. / The fast-paced advancements in the understanding of semiconductor theoretical basis lead to the conception of diversified power electronic devices. In the field of power electronics, the efficiency of those devices is strongly linked to high power rates and full integration trends that guide the design process of converters. Consequently, electrothermal constraints management is gaining importance when it comes to the reliability aspect of power systems. The key parameter that needs to be monitored during converter lifetime is the junction temperature of semi-conductor components.Many methods are used to estimate the junction temperature of semi-conductor chips embedded into power converters. That parameter is usually defined as a virtual junction temperature Tjv which reflects the temperature of the active parts of power chips. Among those approaches, ThermoSensitive Electrical Parameters (TSEPs) are widely employed. Nonetheless, the representativeness of TSEPs is not fully addressed in the scientific literature. It is therefore mandatory to investigate this aspect using new additional methods to validate the temperature measurements performed thanks to TSEPs, especially under the converter’s conditions of use.As part of our work, a new temperature measurement tool dedicated to TSEPs validation is designed. Microelectronic conventional processes are adapted in order to develop a power instrumented chips (Diodes, IGBTs) with integrated temperature sensor. It makes possible simultaneous junction temperature measurements using a TSEP and the on-chip resistive detector. The experimental validation results are performed using instrumented power modules and infrared thermography.
4

Capteurs résistifs de dihydrogène H2 à base d’assemblages de nanostructures discontinues organisées / Hydrogen Resistive Sensors based on Organized Nanostructures Assembles

Rajoua, Khalil 18 July 2014 (has links)
Les contextes mondiaux énergétiques, climatiques et économiques actuels évoluent de manières telles que le dihydrogène H2 prend une place de plus en plus importante en tant que combustible et vecteur énergétique. Le dihydrogène est un gaz incolore, inodore et non-toxique donc indécelable par les sens humains, mais il est extrêmement inflammable et explosif. De plus, H2 est caractérisé par un domaine d'explosivité très large, de 4 % à 75 % de H2 dans l'air. L'objet de ce travail de thèse a donc été de préparer des capteurs de sécurité ou de quantification originaux et ayant des performances accrues pour la détection de H2. Les capteurs préparés sont de types résistifs et les métaux sensibles utilisés sont le palladium et le platine. Afin d'améliorer les performances de détection de ces capteurs à dihydrogène, plusieurs morphologies de couches sensibles ont été conçues : des monocouches organisées à 2 dimensions de nanoparticules cœurs-coquilles Pd@Au et Pt@Au formées par la méthode de Langmuir-Blodgett ou immobilisés sur les substrats par un agent de couplage de type silane (mercaptopropyltrimethoxysilane), des dépôts physiques à 2 dimensions et des films de nanoparticules à 3 dimensions. Selon la morphologie de la couche préparée et le type de métal sensible utilisé, divers mécanismes de détection ont été mis en évidence et diverses performances de détection ont été observées (type et amplitude de réponse, gamme de détection, temps de réponse et de retour,...). Les modèles de Fuchs-Sondheimer et Mayadas-Shatzkes d'une part, et un modèle de percolation par la création de chemins de conduction d'autre part, ont permis d'expliquer les variations de résistivité électrique des couches sensibles à base respectivement de platine et de palladium lors de l'exposition à l'hydrogène. / Hydrogen takes is foreseen as a generalized fuel and energy carrier. It is a colorless, odorless and non-toxic gas, and therefore it is undetectable by the human senses. Hydrogen has a severe drawback as it is an extremely flammable and explosive gas. Moreover, H2 has a wide explosive range, from 4 to 75 % H2 in air. Therefore, the aim of this PhD work was to develop safety and concentration sensors with enhanced performances. Resistive sensing layers were designed on several morphologies and sensing materials : 2D Langmuir-Blodgett organized monolayers of core-shell Pd@Au or Pt@Au nanoparticles, immobilized Pd@Au monolayer grafted through a self assembled monolayer, evaporated 2D metal films of Pt or Pd, and 3D platinum nanoparticles arrays. According to the sensing layer morphology and sensing metal, numerous sensing mechanisms and performances were demonstrated (response type and amplitude, sensing range, response and recovery times,…). Fuchs-Sondheimer and Mayadas-Shatzkes models on the one hand, and a percolation model on the other, allowed the origin of electrical resistance changes to be pointed out, respectively for platinum and palladium sensing layers.

Page generated in 0.068 seconds